3-Flows and Minimal Combs - Supporting Material

Cândida Nunes da Silva, C. L. Lucchesi

Relatório Técnico 13-01— Technical Report 13-01

FACOM - UFMS

August of 2013 – Agosto de 2013

Faculdade de Computação Universidade Federal de Mato Grosso do Sul Campo Grande, MS, Brasil

3-Flows and Minimal Combs – Supporting Material

Cândida N. da Silva*

Cláudio L. Lucchesi[†]

Submitted April, 2011 Revised August, 2013

A Analysis of 7-Cuts

This is an appendix to the paper "3-Flows and Minimal Combs", by Cândida Nunes da Silva and Cláudio L. Lucchesi [1]. We give here details of the proof of the Main Theorem [1, Theorem 3.1], when r=7 (Case 4). We adopt the notation used in the proof of the Main Theorem.

Case 4 r = 7.

Assume that C is a bond but not a comb. A mod 3-orientation of a 7-cut C orients five edges, called the *majority edges*, in one direction and the remaining two, called the *minority edges*, in the other direction. Therefore, the number of non-similar mod 3-orientations of C is $\binom{7}{2} = 21$. For i = 1, 2, we say that two edges of C are compatible in G_i if there is a feasible mod 3-orientation of C in G_i having these two edges as the minority edges. We define the compatibility graph L_i of G_i as the graph with seven vertices, each representing one edge of C, such that two edges of C are adjacent in L_i if and only if they are compatible in G_i . We emphasize that if two edges f and g of C are parallel in G_i then each edge f of f or f is either adjacent to both f and f in f

We denote by $G := G_{\star}/(Z \to z)$ a generic C-contraction of G_{\star} , without specifying whether it is G_1 or G_2 . Similarly, we denote by L the compatibility graph of a generic C-contraction G.

Figure 1 depicts graph γ , the only C-contraction of G_{\star} having multiplicity three, as shown in the next result. That graph has 12 feasible non-similar mod 3-orientations.

Lemma A.1 Let μ denote the maximum multiplicity of edges of G. Then, $\mu \leq 3$, with equality only if G is the graph γ depicted in Figure 1.

^{*}Federal University of São Carlos – UFSCar, Sorocaba, SP, Brazil. Support by FAPESP and CAPES

[†]Faculty of Computing, FACOM-UFMS, Campo Grande, MS, Brazil. Support by CNPq and CAPES

Figure 1: Graph γ is the only C-contraction of G_{\star} with edge multiplicity three

Proof: Every vertex of G_{\star} has degree three or five. By Lemma 2.3, $\mu \leq 3$. Assume that $\mu = 3$. Let v_1 be a vertex of G that is joined to z by three edges. Then, v_1 has degree five and is joined to $Y := \overline{Z} - v_1$ by two edges, whence $D := \partial(Y)$ is a 6-cut. Every 6-cut of G_{\star} is acyclic. The shore \overline{Y} of D in G_{\star} includes Z. Thus, $G_{\star}[\overline{Y}]$ is cyclic, whence Y is the grip of D. By Corollary 2.7, the possible degree sequences of the vertices of Y are (5,3) and (3,3). Note that Y cannot have both vertices of degree three, otherwise both would be joined to z by two or more edges, a contradiction to Lemma 2.3. Thus, Y has one vertex of degree three, the other of degree five. Moreover, $G_{\star}[Y]$ is connected. We conclude that $G = \gamma$.

Lemma A.2 Graph G_2 has no 4-cuts. If C separates S_* then every 5-cut of G_1 and every 5-cut of G_2 is trivial.

<u>Proof</u>: Let $G := G_{\star}/(Z \to z)$ denote a C-contraction of G_{\star} . Let $D := \partial(Y)$ be a cut of G, such that $4 \le |D| \le 5$. Assume also that either D is a non-trivial 5-cut or D is a 4-cut. Adjust notation so that $Y \subset \overline{Z}$. Cut D is a comb, its shore Y is a grip. By Corollary 2.7, if |D| = 4 then Y consists of two vertices, both in S_{\star} , whereas if |D| = 5 then Y consists of three vertices, all in S_{\star} . If |D| = 5 then C does not separate S_{\star} . If |D| = 4 then $|S_{\star} \cap V(G)| \ge 2$, whence $G \ne G_2$.

Case 4.1 Cut C does not separate S_{\star} .

Lemma A.3 $\ell_1 \ge 3$.

<u>Proof:</u> By hypothesis, $|S_1| = 3$, whence $S_1 = S_*$ and G_1 is not γ . The multiplicity μ of edges of G_1 satisfies $\mu \leq 2$. Let $\mathcal{D} := \{D_1, D_2, \dots, D_r\}$ be a collection of non-similar mod 3-orientations of G_1 . Graph G_1 has a mod 3-orientation, D_1 . Thus, $r \geq 1$. Suppose r < 3. We will show that G_1 has a mod 3-orientation that is not similar to any of the orientations in \mathcal{D} . Note that three or more edges of C are majority edges in all orientations of \mathcal{D} . In fact, if r = 1 five of them are majority edges and if r = 2 at least three of them are majority

edges on both orientations. Adjust notation so that edges $e_i := \overline{x}v_i$, i = 1, 2, 3, are majority edges in all mod 3-orientations of \mathcal{D} .

Let $T:=\{e_1,e_2,e_3\}$. As G_1 and γ are distinct, then at least two edges in T are not parallel in G. Adjust notation so that e_1 and e_2 are not parallel. Let H_{12} be the graph obtained from G_1 by splitting the contraction vertex \overline{x} of G_1 on e_1 and e_2 . Assume that H_{12} , together with S_{\star} , does not satisfy the hypothesis of the Conjecture. By Lemma 2.4, G_1 has a 5-cut D_{12} that contains both e_1 and e_2 but does not separate S_{\star} . As D_{12} contains both e_1 and e_2 , it follows that D_{12} is non-trivial. By Lemma 2.1, D_{12} is a comb and its grip Y_{12} consists of the three vertices of degree three of S_{\star} . Whence, v_1 and v_2 are vertices of S_{\star} . By Lemma 2.3, they are joined to \overline{x} by one single edge. Then, e_3 is not parallel with any of e_1 and e_2 . Repeating the reasoning above with e_3 playing the role of e_2 , we deduce that G_1 has a 5-comb D_{13} that contains e_3 and whose grip consists of the three vertices of S_{\star} . We conclude that $S_{\star} = \{v_1, v_2, v_3\}$. Moreover, $D_{12} = D_{13}$. Therefore, the three edges of T lie in a 5-comb of G_1 whose grip is S_{\star} . This is a contradiction, as every mod 3-orientation of G_1 orients two of the edges of T in one direction, the third edge in the other direction (Figure 2).

Figure 2: Illustration for the proof of Lemma A.3

Assume, without loss of generality, that H_{12} , together with S_{\star} , satisfies the hypothesis of the Conjecture. Graph H_{12} has as many edges as G_1 , which in turn has fewer edges than G_{\star} . Thus, H_{12} has a mod 3-orientation, D_2 . Therefore, D_2 is a mod 3-orientation of G_1 such that one of e_1 and e_2 is a minority edge. Hence, D_2 is not similar to any of the mod 3-orientations in \mathcal{D} . We conclude that G_1 has at least three non-similar mod 3-orientations, as asserted.

Lemma A.4 $\overline{\ell_2} \leq 2$.

Proof: In the proof of this assertion, we use Lemmas A.5 and A.6 shown below.

Lemma A.5 The edges of the incompatibility graph $\overline{L_2}$ are pairwise adjacent.

<u>Proof</u>: Let P_1 and P_2 be two disjoint pairs of edges of C. We must show that at least one of P_1 and P_2 is compatible, that is, there exists a mod 3-orientation of G_2 such that one of P_1 and P_2 is the pair of minority edges. For this, assume, without loss of generality,

Figure 3: Graphs H and J in the proof of Lemma A.5

that $P_1 = \{e_1, e_2\}$ and $P_2 = \{e_3, e_4\}$. Let $P := P_1 \cup P_2$, $P' := \{e_5, e_6, e_7\}$. Let H be the graph obtained from G_2 by splitting x on $\{P, P'\}$ (Figure 3). Let x' denote the new vertex of H. Let J be the graph obtained from H by expanding x on e_3 and e_4 . Let x'' denote the new vertex of J (Figure 3). Let $S_J := \{x, x', x''\}$. We assert that J and S_J satisfy the hypothesis of the Conjecture.

Cut C is a bond, therefore $G_{\star}[\overline{X}]$ is connected. Thus, J is connected and edge xx'' is not a bridge. Assume, to the contrary, that J has an 1-cut C_1 . Then C_1 separates $\{x, x'\}$ but is not edge xx'', whence $C_1 \cup \{e_5, e_6, e_7\}$ is a 4-cut of G_2 , a contradiction to Lemma A.2. Thus, J is 2-edge-connected. Graph G_2 is free of vertices of degree three, therefore every 3-cut of J separates S_J . We deduce that J and S_J satisfy the hypothesis of the Conjecture.

Finally, J has one more edge than G_2 , which in turn has no more than $|E(G_*)| - 3$ edges. Thus, J has fewer edges than G_* , whence it has a mod 3-orientation. Consequently, G_2 has a mod 3-orientation in which one of P_1 and P_2 is the pair of minority edges. Thus, one of P_1 and P_2 is compatible. This conclusion holds for each pair P_1 , P_2 of disjoint pairs of edges of C. As asserted, any two edges of $\overline{L_2}$ are adjacent.

Lemma A.6 For every pair P of non-parallel edges of C, every edge of C - P is adjacent in L_2 to at least one edge in P.

Proof: Adjust notation so that $P = \{e_1, e_2\}$. Let $S := \{x\} = S_{\star}/(X \to x)$. Let H be the graph resulting from G_2 by the splitting of x on e_1 and e_2 (Figure 4). Let w be the new vertex of H. Let J be the graph obtained from H by expanding x on e_4 and e_5 and then expanding again on e_6 and e_7 . Let x' and x'' denote the two new vertices of J, where x' is incident with e_4 and e_5 , and x'' is incident with e_6 and e_7 (Figure 4). Let $S_J := \{x, x', x''\}$. By Corollary 2.5, H and S satisfy the hypothesis of the Conjecture. Moreover, as C is a bond, vertex x is not a cut vertex of H. Thus, J and S_J also satisfy the hypothesis of the Conjecture. Graph J has two more edges than G_2 , which in turn has no more than $|E(G_{\star})| - 3$ edges. Thus, J has a mod 3-orientation. We conclude that one of e_1 and e_2 is adjacent to e_3 in L_2 . This conclusion holds for each edge e_3 in C - P.

We may now resume the proof of Lemma A.4. Graphs G_2 and γ are distinct. Suppose to the contrary that $\overline{L_2}$ has at least three edges. By Lemma A.5, all edges of $\overline{L_2}$ are pairwise

Figure 4: Graphs H and J in the proof of Lemma A.6

adjacent. Thus, either $\overline{L_2}$ has a triangle or a three pointed star. Consider first the case in which $\overline{L_2}$ has a triangle. Adjust notation so that e_1e_2 , e_1e_3 and e_2e_3 are the edges of the triangle. Then, by Lemma A.6, the three edges e_1 , e_2 and e_3 of cut C are parallel in G_2 , a contradiction, as G_2 is not γ . We may thus assume that $\overline{L_2}$ has a three pointed star. Adjust notation so that e_1e_2 , e_1e_3 and e_1e_4 are the edges of the star. Then, by Lemma A.6, the three edges e_2 , e_3 and e_4 of cut C are parallel in G_2 , again a contradiction. In fact, $\overline{L_2}$ has at most two edges.

We are now in condition to prove the Theorem for this case. By Lemma A.3, $\ell_1 \geq 3$. By Lemma A.4, $\ell_2 \geq 19$. Thus, $\ell_1 + \ell_2 > 21$, whence C has a mod 3-orientation that is feasible in both G_1 and G_2 . Consequently, G_{\star} has a mod 3-orientation, a contradiction.

Case 4.2 Cut C separates S_{\star} .

Lemma A.7 (Double Splitting) Let $G := G_{\star}/(Z \to z)$ be a generic C-contraction of G_{\star} . Consider the pair $\mathcal{P} := \{P_1, P_2\}$, where P_1 and P_2 are disjoint pairs of edges of C. Let m denote the number of pairs P_i in \mathcal{P} that consist of parallel edges. If $m + |S_{\star} - Z| \leq 2$ then the compatibility graph L has an edge joining an edge of C in P_1 to an edge of C in P_2 .

<u>Proof</u>: By hypothesis, $|S_{\star} - Z| \ge 1$. Thus, $m \le 1$. We may thus adjust notation so that the edges in P_2 are not parallel. Adjust notation so that $P_1 = \{e_1, e_2\}$ and $P_2 = \{e_3, e_4\}$. Define S to be

$$S := \begin{cases} S_{\star}/(Z \to z), & \text{if } v_1 \neq v_2, \\ \{v_1\} \cup (S_{\star}/(Z \to z)), & \text{otherwise.} \end{cases}$$

Note that the contraction vertex z lies in $S_{\star}/(Z \to z)$. Thus,

$$|S| = m + |S_{\star}/(Z \to z)| = m + |S_{\star} - Z| + 1 \le 3.$$

Let H denote the graph obtained from G by splitting z on e_1 and e_2 . Let z' denote the new vertex of H (Figure 5). Let J be the graph obtained from H by splitting z on e_3 and e_4 . Let z'' denote the new vertex of J.

Figure 5: A double splitting

Claim Graph J, together with S, satisfies the hypothesis of the Conjecture.

<u>Proof</u>: Assume the contrary. By hypothesis, C is a bond, thus J is connected. We may thus assume that J has a cut D_J that is either a 3-cut that does not separate S or a 1-cut. By Corollary 2.5, graph H, together with S, satisfies the hypothesis of the Conjecture. Thus, D_J is not a cut of H. We conclude that H has a cut D_H that includes P_2 and such that either D_H is a 3-cut or D_H is a 5-cut that does not separate S.

We assert that G contains a cut D that includes P_2 and either it is a 7-cut that does not separate S or it is 5-cut of G. For this, consider first the case in which D_H is a cut of G. As D_H includes P_2 , in turn a pair of non-parallel edges, D_H cannot be a 3-cut. In that case, D_H is a 5-cut of G that includes P_2 . Alternatively, consider next the case in which D_H is not a cut of G. In that case, $D_H \cup P_1$ is a cut of G. Moreover, if D_H does not separate S then neither does $D_H \cup P_1$. We conclude that G has a cut D such that either D is a 5-cut that includes P_2 or D is a 7-cut that does not separate S. If D is a 7-cut that does not separate S then it does not separate S_{\star} in G_{\star} , a case already considered. If D is a 5-cut that includes P_2 then it is non-trivial, in contradiction to Lemma A.2.

Note that J has as many edges as G, which in turn has fewer edges than G_{\star} . Consequently, J has a mod 3-orientation. In every mod 3-orientation of J, one of the edges of P_1 , together with an edge of P_2 , constitutes the pair of minority edges of C.

Corollary A.8 Consider a quadruple Q of edges of C, let m denote the number of pairs of edges in Q that are parallel in G. If $m + |S_{\star} - Z| \leq 2$ then the compatibility graph L has two adjacent edges joining edges of C that lie in Q.

Proof: Assume that $m + |S_{\star} - Z| \leq 2$. Adjust notation so that $Q = \{e_1, e_2, e_3, e_4\}$. Let $P_1 := \{e_1, e_3\}$, let $P_2 := \{e_2, e_4\}$. By the Lemma, L has an edge joining an edge of C in P_1 to an edge of C in P_2 . Adjust notation so that e_1 and e_2 are adjacent in L. Let $P'_1 := \{e_1, e_2\}$, $P'_2 := \{e_3, e_4\}$. Again, by the Lemma, L has an edge joining e_i , $i \in \{1, 2\}$, to an edge of C in P'_2 .

Case 4.2.1 Graph G_2 is not simple.

Graph G_1 has two vertices of degree three. Thus, G_1 and γ are distinct. It follows that the maximum multiplicity of G_1 is two.

Consider first the case in which $G_2 = \gamma$. It is easy to see that C includes a quadruple Q which induces in L_2 the complete graph on four vertices. The maximum multiplicity of edges of C in G_1 is two. Therefore, there exists a partition $\{P_1, P_2\}$ of edges of Q in two pairs such that the edges of each pair are not parallel in G_1 . By Lemma A.7, G_1 has a mod 3-orientation such that some edge f_1 of P_1 and some edge f_2 of P_2 constitute the pair of minority edges. But f_1 and f_2 are adjacent in L_2 , therefore G_2 also has a mod 3-orientation having f_1 and f_2 as minority edges. In that case, G_{\star} has a mod 3-orientation, a contradiction.

We may thus assume that G_2 and γ are distinct. In that case, the maximum multiplicity of edges of G_2 is two. By hypothesis, G_2 has parallel edges. Adjust notation so that e_1 and e_2 are parallel in G_2 . Let Y be the set of edges of $C - e_1 - e_2$ that are adjacent to e_1 in L_2 . Note that as e_1 and e_2 are parallel, then Y is also the set of edges of $C - e_1 - e_2$ that are adjacent to e_2 in L_2 . We assert that $|Y| \geq 3$. For this, let $P_1 := \{e_1, e_2\}$, let T be a triple of edges in $C - e_1 - e_2$. The maximum multiplicity is two, therefore T includes a pair P_2 of edges that are not parallel in G_2 . By Lemma A.7, one edge of C in P_1 is adjacent in L_2 to some edge of C in P_2 . Edges e_1 and e_2 are parallel in G_2 . Thus, both are adjacent in L_2 to the edge in P_2 . This conclusion holds for each triple T that is a subset of $C - e_1 - e_2$. Consequently, $|Y| \geq 3$. In sum, each of e_1 and e_2 is adjacent in L_2 to each edge of a set Y of three or more edges of $C - e_1 - e_2$.

Thus, Y includes a pair P_3 of edges that are not parallel in G_1 . Edges e_1 and e_2 are parallel in G_2 and G_{\star} is simple, therefore e_1 and e_2 are not parallel in G_1 . By Lemma A.7, with P_3 playing the role of P_2 , we conclude that an edge in P_1 is adjacent to an edge in P_3 in L_1 . We have seen that every element of P_1 is adjacent to every element of P_3 in L_2 . Thus, L_1 and L_2 have an edge in common, whence G_{\star} has a mod 3-orientation. This is a contradiction.

Case 4.2.2 Graph G_2 is simple.

For this case, we need to introduce a new graph, which we call *the crown*. This graph is depicted in Figure 6.

Lemma A.9 If L_1 has a quadrilateral or the crown as a subgraph then G_{\star} has a mod 3-orientation.

<u>Proof</u>: Consider first the case in which L_1 has a quadrilateral Q as a subgraph. Adjust notation so that $Q = (e_1, e_2, e_3, e_4)$. By hypothesis, G_2 is simple. By Corollary A.8, L_2 has two adjacent edges whose ends lie in Q. One of them is an edge of L_1 . Thus, L_1 and L_2 have a common edge, whence G_{\star} has a mod 3-orientation.

Consider next the case in which L_1 has the crown as a subgraph. Let H be the graph obtained from G_2 by expanding x on e_5 and e_6 , let x' denote the new vertex of H. Let J

Figure 6: The crown

Figure 7: The graph J in the proof of Lemma A.9

be the graph obtained from H by expanding x on xx' and e_7 . Let x'' denote the new vertex of J (Figure 7).

Let $S := S_2 \cup \{x', x''\}$. We assert that J and S satisfy the hypothesis of the Conjecture. Cut C is a bond, thus $G_2 - x$ is connected, whence J is connected and edges xx'' and x'x'' are not bridges. Moreover, G_{\star} is 2-edge-connected. Thus, J is 2-edge-connected. Assume, to the contrary, that J has a 3-cut C_3 that does not separate S. The only 3-cut of G_2 is trivial, it has the vertex of S_2 as the only vertex of its singleton shore. That cut separates S. Thus, C_3 is not a cut of G_2 . Consequently, it contains at least one of the edges xx'' and x'x''. If it contains edge x'x'' then it separates S. We may thus assume that C_3 contains only edge xx'' not in $E(G_2)$. Let $D := C_3 \triangle \partial_J(x)$. Vertex x does not lie in S, therefore D is a cut of G_2 that does not separate S. Moreover, it is a k-cut, for $k \in \{2,4,6\}$. Certainly $k \neq 2$. Also, $k \neq 4$, by Lemma A.2. Thus, k = 6. Let $Y \subset \overline{X}$ be a shore of C_6 . We have seen that every 6-cut of G_{\star} is acyclic. By Corollary 2.7, D separates S_{\star} . Thus, Y contains the only vertex of S_2 , whence D separates S. This is a contradiction.

Graph J has two more edges than G_2 , which, in turn has no more than $|E(G_{\star})| - 3$ edges. Thus, J has a mod 3-orientation. Consequently, G_2 has a mod 3-orientation in which either e_5 and e_6 are the minority edges, or e_7 is a minority edge, together with one of e_1 , e_2 , e_3 and e_4 . In both alternatives, L_2 has an edge in common with L_1 , whence G_{\star} has a mod 3-orientation.

To complete the proof, recall that graph G_1 is not γ , because it contains two vertices of degree three. Thus, the maximum multiplicity of G_1 is two.

Lemma A.10 If G_1 is simple then G_{\star} has a mod 3-orientation.

<u>Proof</u>: We shall prove the assertion by proving that L_1 has either a quadrilateral or the crown as a subgraph. Let Δ denote the maximum degree of vertices of L_1 . Adjust notation so that e_7 has degree Δ in L_1 . Let e_i , $i = 1, 2, ..., \Delta$ denote the neighbours of e_7 .

Consider first the case in which $\Delta \leq 2$. By Corollary A.8, every quadruple of vertices of L_1 spans at least a pair of adjacent edges. Thus, $\Delta \geq 2$, whence $\Delta = 2$. Consider the quadruple $Q_1 := \{e_3, e_4, e_5, e_6\}$. If Q_1 spans a complete graph then L_1 has a quadrilateral as a subgraph. We may thus assume that Q_1 does not span a complete graph. Adjust notation so that e_3 and e_4 are not adjacent. Consider the quadruple $Q_2 := \{e_1, e_2, e_3, e_4\}$. Vertex e_1 cannot be adjacent to two vertices in Q_2 , otherwise $\Delta \geq 3$, a contradiction. Likewise, e_2 is not adjacent to two vertices of Q_2 . By Corollary A.8, one of e_3 and e_4 is adjacent to two vertices of Q_2 . Adjust notation so that e_3 is adjacent to two vertices of Q_2 . As e_3 and e_4 are not adjacent, then e_3 , just like e_7 , is adjacent to both e_1 and e_2 . Thus, L_1 has a quadrilateral. Consider next the case in which $\Delta = 3$. Let $Q_3 := \{e_7, e_1, e_4, e_5\}$. Vertex e_7 is not adjacent to e_4 , nor to e_5 . By Lemma A.7, e_1 is adjacent to at least one of e_4 and e_5 . Repeating this reasoning twice, once with e_2 playing the role of e_1 , then e_3 playing the role of e_1 , we deduce that each vertex in $\{e_1, e_2, e_3\}$ is adjacent to at least one of e_4 and e_5 . It follows that one of e_4 and e_5 is adjacent to at least two vertices in $N(e_7)$. Thus, L_1 has a quadrilateral.

Finally, assume that $\Delta \geq 4$. If e_5 and e_6 are adjacent then L_1 has the crown as a subgraph. We may thus assume that e_5 and e_6 are not adjacent. Consider the quadruple $Q_4 := \{e_1, e_2, e_5, e_6\}$. If e_5 is adjacent to e_1 and to e_2 then L_1 has a quadrilateral. We may thus assume that e_5 is adjacent to at most one vertex of Q_4 . Likewise, we may assume that e_6 is adjacent to at most one vertex of Q_4 . By Corollary A.8, one of the vertices in $\{e_1, e_2\}$ is adjacent to two vertices of Q_4 . Adjust notation so that e_1 is adjacent to two vertices of Q_4 . We deduce that e_1 is adjacent to at least one vertex in $\{e_5, e_6\}$. By repeating a similar reasoning with other quadruples we deduce that each vertex in $\{e_1, e_2, e_3\}$ is adjacent to some vertex in $\{e_5, e_6\}$. Then, one of the vertices in $\{e_5, e_6\}$ is adjacent to two or more vertices in $\{e_1, e_2, e_3\}$, whence L_1 has a quadrilateral.

Lemma A.11 If G_1 is not simple then G_{\star} has a mod 3-orientation.

<u>Proof</u>: Let λ denote the number of pairs of edges of C that are parallel in G_1 . Again, we show that L_1 has either a quadrilateral or the crown as a subgraph.

Consider first the case in which $\lambda=1$. Adjust notation so that e_1 and e_2 are parallel in G_1 . If e_1 is adjacent to two vertices in $C-e_1-e_2$ then the same two vertices are adjacent to e_2 , whence L_1 has a quadrilateral. We may thus assume that e_1 is adjacent to at most one vertex in $C-e_1-e_2$. Adjust notation so that e_1 is not adjacent to e_i , for i=3,4,5,6. If $\{e_3,e_4,e_5,e_6\}$ spans a complete graph then L_1 has a quadrilateral. We may thus assume that it does not span a complete graph. Adjust notation so that e_3 and e_4 are not adjacent. Consider the quadruple $\{e_1,e_3,e_4,e_5\}$. By Corollary A.8, e_5 is adjacent to both e_3 and e_4 . Likewise, e_6 is adjacent to both e_3 and e_4 . Thus, L_1 has a quadrilateral.

10 REFERENCES

Consider next the case in which $\lambda \geq 2$. Adjust notation so that e_1 and e_2 are parallel in G_1 and e_3 and e_4 are also parallel in G_1 . If e_1 is adjacent to e_3 then $\{e_1, e_2, e_3, e_4\}$ spans a quadrilateral (possibly with diagonals). We may thus assume that no vertex in $\{e_1, e_2\}$ is adjacent to any vertex in $\{e_3, e_4\}$.

Let $T := \{e_5, e_6, e_7\}$. Consider next the case in which a vertex in T, say, e_5 , is adjacent to both e_1 and e_3 in L_1 . Then, e_5 is adjacent to each of the four vertices in $\{e_1, e_2, e_3, e_4\}$. If vertex e_3 is adjacent to both e_6 and e_7 , then (e_3, e_6, e_4, e_7) is a quadrilateral of L_1 . We may thus assume that e_3 and e_6 are not adjacent. By Lemma A.7, with $\mathcal{P}_1 := \{e_1, e_6\}$, and $P_2 := \{e_3, e_7\}$, we have that e_6 and e_7 are adjacent, whence L_1 has the crown as a subgraph.

We may thus assume that no vertex in T is adjacent to both e_1 and e_3 . Consider next the case in which $\lambda=3$. Adjust notation so that e_5 and e_6 are parallel. We may assume that no edge of L_1 has both ends in $\{e_1,e_3,e_5\}$, otherwise L_1 has a quadrilateral. Consider the quadruple $\{e_1,e_3,e_5,e_7\}$. By Corollary A.8, e_7 is adjacent to at least two vertices in $\{e_1,e_3,e_5\}$. We may adjust notation so that e_7 is adjacent to both e_1 and e_3 . Thus, T has a vertex adjacent to both e_1 and e_3 . This is a case that we have already considered. The assertion holds if $\lambda=3$.

We may thus assume that $\lambda = 2$. For any two distinct vertices v and w in T, by considering the quadruple $\{e_1, e_3, v, w\}$, we observe that v and w are adjacent and one of v and w is adjacent to one of e_1 and e_3 . Let us derive some consequences of this observation. The set T spans a triangle in L_1 . Adjust notation so that e_5 is adjacent to e_1 . One of e_6 and e_7 is adjacent to a vertex in $\{e_1, e_3\}$. Adjust notation so that e_6 is adjacent to a vertex in $\{e_1, e_3\}$. If e_1 is adjacent to any vertex in $T - e_5$ then L_1 has a quadrilateral. We may assume that e_5 is the only neighbour of e_1 in T and e_6 is the only neighbour of e_3 in T (Figure 8).

Figure 8: Illustration for the proof of Lemma A.11

Consider the pairs $\mathcal{P}_1 := \{e_1, e_3\}$ and $\mathcal{P}_2 := \{e_2, e_4\}$. By Lemma A.7, either e_1 is adjacent to e_2 or e_3 is adjacent to e_4 . In both alternatives, L_1 has the crown as a subgraph.

The full analysis of the case r = 7 completes the proof of the Main Theorem.

References

[1] C. N. da Silva and C. L. Lucchesi. 3-Flows and minimal combs. Submitted, 2013.

List of Assertions

Let μ denote the maximum multiplicity of edges of G . Then, $\mu \leq 3$, with equality only if G is the graph γ depicted in Figure 1.
Lemma A.2 {lem:no4-no5non-trivial}
Graph G_2 has no 4-cuts. If C separates S_{\star} then every 5-cut of G_1 and every 5-cut of G_2 is trivial.
Lemma A.3 {lem:7-3}
$\ell_1 \geq 3$.
Lemma A.5 {lem:7-0-sem-pares-disjuntos}
The edges of the incompatibility graph $\overline{L_2}$ are pairwise adjacent.
Lemma A.6 {lem:7-0-paralelas}
Lemma A.7 {lem:double-splitting} 5
(Double Splitting) Let $G := G_{\star}/(Z \to z)$ be a generic C -contraction of G_{\star} . Consider the pair $\mathcal{P} := \{P_1, P_2\}$, where P_1 and P_2 are disjoint pairs of edges of C . Let m denote the number of pairs P_i in \mathcal{P} that consist of parallel edges. If $m + S_{\star} - Z \le 2$ then the compatibility graph L has an edge joining an edge of C in P_1 to an edge of C in P_2 .
Corollary A.8 {cor:double-splitting} 6
Consider a quadruple Q of edges of C , let m denote the number of pairs of edges in Q that are parallel in G . If $m+ S_{\star}-Z \leq 2$ then the compatibility graph L has two adjacent edges joining edges of C that lie in Q .
Lemma A.9 {lem:Q-crown}
If L_1 has a quadrilateral or the crown as a subgraph then G_{\star} has a mod 3-orientation.
Lemma A.10
If G_1 is simple then G_{\star} has a mod 3-orientation.
Lemma A.11 {lem:7-2:G1-not-simple}
If G_1 is not simple then G_{\star} has a mod 3-orientation.