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A Analysis of 7-Cuts

This is an appendix to the paper “3-Flows and Minimal Combs”, by Cândida Nunes
da Silva and Cláudio L. Lucchesi [1]. We give here details of the proof of the Main
Theorem [1, Theorem 3.1], when r = 7 (Case 4). We adopt the notation used in the proof
of the Main Theorem.

Case 4 r = 7.

Assume that C is a bond but not a comb. A mod 3-orientation of a 7-cut C orients five
edges, called the majority edges, in one direction and the remaining two, called the minority

edges, in the other direction. Therefore, the number of non-similar mod 3-orientations of
C is

(

7

2

)

= 21. For i = 1, 2, we say that two edges of C are compatible in Gi if there is a
feasible mod 3-orientation of C in Gi having these two edges as the minority edges. We
define the compatibility graph Li of Gi as the graph with seven vertices, each representing
one edge of C, such that two edges of C are adjacent in Li if and only if they are compatible
in Gi. We emphasize that if two edges f and g of C are parallel in Gi then each edge h of
C − f − g is either adjacent to both f and g in Li, or is adjacent to neither f nor g in Li.
We say that Li, the complement of Li, is the incompatibility graph of Gi. We denote by ℓi
and ℓi the number of edges of Li and Li, respectively.

We denote by G := G⋆/(Z → z) a generic C-contraction of G⋆, without specifying
whether it is G1 or G2. Similarly, we denote by L the compatibility graph of a generic
C-contraction G.

Figure 1 depicts graph γ, the only C-contraction of G⋆ having multiplicity three, as
shown in the next result. That graph has 12 feasible non-similar mod 3-orientations.

Lemma A.1 Let µ denote the maximum multiplicity of edges of G. Then, µ ≤ 3, with

equality only if G is the graph γ depicted in Figure 1.
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Figure 1: Graph γ is the only C-contraction of G⋆ with edge multiplicity three

Proof: Every vertex of G⋆ has degree three or five. By Lemma 2.3, µ ≤ 3. Assume that
µ = 3. Let v1 be a vertex of G that is joined to z by three edges. Then, v1 has degree five
and is joined to Y := Z − v1 by two edges, whence D := ∂(Y ) is a 6-cut. Every 6-cut of
G⋆ is acyclic. The shore Y of D in G⋆ includes Z. Thus, G⋆[Y ] is cyclic, whence Y is the
grip of D. By Corollary 2.7, the possible degree sequences of the vertices of Y are (5, 3)
and (3, 3). Note that Y cannot have both vertices of degree three, otherwise both would be
joined to z by two or more edges, a contradiction to Lemma 2.3. Thus, Y has one vertex
of degree three, the other of degree five. Moreover, G⋆[Y ] is connected. We conclude that
G = γ. ✷

Lemma A.2 Graph G2 has no 4-cuts. If C separates S⋆ then every 5-cut of G1 and every

5-cut of G2 is trivial.

Proof: Let G := G⋆/(Z → z) denote a C-contraction of G⋆. Let D := ∂(Y ) be a cut of G,
such that 4 ≤ |D| ≤ 5. Assume also that either D is a non-trivial 5-cut or D is a 4-cut.
Adjust notation so that Y ⊂ Z. Cut D is a comb, its shore Y is a grip. By Corollary 2.7,
if |D| = 4 then Y consists of two vertices, both in S⋆, whereas if |D| = 5 then Y consists
of three vertices, all in S⋆. If |D| = 5 then C does not separate S⋆. If |D| = 4 then
|S⋆ ∩ V (G)| ≥ 2, whence G 6= G2. ✷

Case 4.1 Cut C does not separate S⋆.

Lemma A.3 ℓ1 ≥ 3.

Proof: By hypothesis, |S1| = 3, whence S1 = S⋆ and G1 is not γ. The multiplicity µ of
edges of G1 satisfies µ ≤ 2. Let D := {D1, D2, . . . , Dr} be a collection of non-similar mod
3-orientations of G1. Graph G1 has a mod 3-orientation, D1. Thus, r ≥ 1. Suppose r < 3.
We will show that G1 has a mod 3-orientation that is not similar to any of the orientations
in D. Note that three or more edges of C are majority edges in all orientations of D. In
fact, if r = 1 five of them are majority edges and if r = 2 at least three of them are majority
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edges on both orientations. Adjust notation so that edges ei := xvi, i = 1, 2, 3, are majority
edges in all mod 3-orientations of D.

Let T := {e1, e2, e3}. As G1 and γ are distinct, then at least two edges in T are not
parallel in G. Adjust notation so that e1 and e2 are not parallel. Let H12 be the graph
obtained from G1 by splitting the contraction vertex x of G1 on e1 and e2. Assume that
H12, together with S⋆, does not satisfy the hypothesis of the Conjecture. By Lemma 2.4,
G1 has a 5-cut D12 that contains both e1 and e2 but does not separate S⋆. As D12 contains
both e1 and e2, it follows that D12 is non-trivial. By Lemma 2.1, D12 is a comb and its grip
Y12 consists of the three vertices of degree three of S⋆. Whence, v1 and v2 are vertices of S⋆.
By Lemma 2.3, they are joined to x by one single edge. Then, e3 is not parallel with any
of e1 and e2. Repeating the reasoning above with e3 playing the role of e2, we deduce that
G1 has a 5-comb D13 that contains e3 and whose grip consists of the three vertices of S⋆.
We conclude that S⋆ = {v1, v2, v3}. Moreover, D12 = D13. Therefore, the three edges of T
lie in a 5-comb of G1 whose grip is S⋆. This is a contradiction, as every mod 3-orientation
of G1 orients two of the edges of T in one direction, the third edge in the other direction
(Figure 2).

v1 v2 v3

x

D

Figure 2: Illustration for the proof of Lemma A.3

Assume, without loss of generality, that H12, together with S⋆, satisfies the hypothesis
of the Conjecture. Graph H12 has as many edges as G1, which in turn has fewer edges than
G⋆. Thus, H12 has a mod 3-orientation, D2. Therefore, D2 is a mod 3-orientation of G1

such that one of e1 and e2 is a minority edge. Hence, D2 is not similar to any of the mod
3-orientations in D. We conclude that G1 has at least three non-similar mod 3-orientations,
as asserted. ✷

Lemma A.4 ℓ2 ≤ 2.

Proof: In the proof of this assertion, we use Lemmas A.5 and A.6 shown below.

Lemma A.5 The edges of the incompatibility graph L2 are pairwise adjacent.

Proof: Let P1 and P2 be two disjoint pairs of edges of C. We must show that at least one
of P1 and P2 is compatible, that is, there exists a mod 3-orientation of G2 such that one
of P1 and P2 is the pair of minority edges. For this, assume, without loss of generality,
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Figure 3: Graphs H and J in the proof of Lemma A.5

that P1 = {e1, e2} and P2 = {e3, e4}. Let P := P1 ∪ P2, P
′ := {e5, e6, e7}. Let H be the

graph obtained from G2 by splitting x on {P, P ′} (Figure 3). Let x′ denote the new vertex
of H. Let J be the graph obtained from H by expanding x on e3 and e4. Let x′′ denote
the new vertex of J (Figure 3). Let SJ := {x, x′, x′′}. We assert that J and SJ satisfy the
hypothesis of the Conjecture.

Cut C is a bond, therefore G⋆[X] is connected. Thus, J is connected and edge xx′′ is
not a bridge. Assume, to the contrary, that J has an 1-cut C1. Then C1 separates {x, x′}
but is not edge xx′′, whence C1∪{e5, e6, e7} is a 4-cut of G2, a contradiction to Lemma A.2.
Thus, J is 2-edge-connected. Graph G2 is free of vertices of degree three, therefore every
3-cut of J separates SJ . We deduce that J and SJ satisfy the hypothesis of the Conjecture.

Finally, J has one more edge than G2, which in turn has no more than |E(G⋆)| − 3
edges. Thus, J has fewer edges than G⋆, whence it has a mod 3-orientation. Consequently,
G2 has a mod 3-orientation in which one of P1 and P2 is the pair of minority edges. Thus,
one of P1 and P2 is compatible. This conclusion holds for each pair P1, P2 of disjoint pairs
of edges of C. As asserted, any two edges of L2 are adjacent. ✷

Lemma A.6 For every pair P of non-parallel edges of C, every edge of C − P is adjacent

in L2 to at least one edge in P .

Proof: Adjust notation so that P = {e1, e2}. Let S := {x} = S⋆/(X → x). Let H be the
graph resulting from G2 by the splitting of x on e1 and e2 (Figure 4). Let w be the new
vertex of H. Let J be the graph obtained from H by expanding x on e4 and e5 and then
expanding again on e6 and e7. Let x

′ and x′′ denote the two new vertices of J , where x′ is
incident with e4 and e5, and x′′ is incident with e6 and e7 (Figure 4). Let SJ := {x, x′, x′′}.
By Corollary 2.5, H and S satisfy the hypothesis of the Conjecture. Moreover, as C is a
bond, vertex x is not a cut vertex of H. Thus, J and SJ also satisfy the hypothesis of
the Conjecture. Graph J has two more edges than G2, which in turn has no more than
|E(G⋆)| − 3 edges. Thus, J has a mod 3-orientation. We conclude that one of e1 and e2 is
adjacent to e3 in L2. This conclusion holds for each edge e3 in C − P . ✷

We may now resume the proof of Lemma A.4. Graphs G2 and γ are distinct. Suppose
to the contrary that L2 has at least three edges. By Lemma A.5, all edges of L2 are pairwise
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Figure 4: Graphs H and J in the proof of Lemma A.6

adjacent. Thus, either L2 has a triangle or a three pointed star. Consider first the case
in which L2 has a triangle. Adjust notation so that e1e2, e1e3 and e2e3 are the edges of
the triangle. Then, by Lemma A.6, the three edges e1, e2 and e3 of cut C are parallel in
G2, a contradiction, as G2 is not γ. We may thus assume that L2 has a three pointed star.
Adjust notation so that e1e2, e1e3 and e1e4 are the edges of the star. Then, by Lemma A.6,
the three edges e2, e3 and e4 of cut C are parallel in G2, again a contradiction. In fact, L2

has at most two edges. ✷

We are now in condition to prove the Theorem for this case. By Lemma A.3, ℓ1 ≥ 3.
By Lemma A.4, ℓ2 ≥ 19. Thus, ℓ1 + ℓ2 > 21, whence C has a mod 3-orientation that is
feasible in both G1 and G2. Consequently, G⋆ has a mod 3-orientation, a contradiction.

Case 4.2 Cut C separates S⋆.

Lemma A.7 (Double Splitting) Let G := G⋆/(Z → z) be a generic C-contraction of

G⋆. Consider the pair P := {P1, P2}, where P1 and P2 are disjoint pairs of edges of C. Let

m denote the number of pairs Pi in P that consist of parallel edges. If m+ |S⋆ − Z| ≤ 2
then the compatibility graph L has an edge joining an edge of C in P1 to an edge of C in P2.

Proof: By hypothesis, |S⋆ − Z| ≥ 1. Thus, m ≤ 1. We may thus adjust notation so that
the edges in P2 are not parallel. Adjust notation so that P1 = {e1, e2} and P2 = {e3, e4}.
Define S to be

S :=

{

S⋆/(Z → z), if v1 6= v2,
{v1} ∪ (S⋆/(Z → z)), otherwise.

Note that the contraction vertex z lies in S⋆/(Z → z). Thus,

|S| = m+ |S⋆/(Z → z)| = m+ |S⋆ − Z|+ 1 ≤ 3.

Let H denote the graph obtained from G by splitting z on e1 and e2. Let z
′ denote the new

vertex of H (Figure 5). Let J be the graph obtained from H by splitting z on e3 and e4.
Let z′′ denote the new vertex of J .



6 A ANALYSIS OF 7-CUTS

zz′ z′′

C
e1 e2 e3 e4 e5 e6 e7

Figure 5: A double splitting

Claim Graph J , together with S, satisfies the hypothesis of the Conjecture.

Proof: Assume the contrary. By hypothesis, C is a bond, thus J is connected. We may thus
assume that J has a cut DJ that is either a 3-cut that does not separate S or a 1-cut. By
Corollary 2.5, graph H, together with S, satisfies the hypothesis of the Conjecture. Thus,
DJ is not a cut of H. We conclude that H has a cut DH that includes P2 and such that
either DH is a 3-cut or DH is a 5-cut that does not separate S.

We assert that G contains a cut D that includes P2 and either it is a 7-cut that does not
separate S or it is 5-cut of G. For this, consider first the case in which DH is a cut of G. As
DH includes P2, in turn a pair of non-parallel edges, DH cannot be a 3-cut. In that case,
DH is a 5-cut of G that includes P2. Alternatively, consider next the case in which DH is
not a cut of G. In that case, DH ∪ P1 is a cut of G. Moreover, if DH does not separate S
then neither does DH ∪ P1. We conclude that G has a cut D such that either D is a 5-cut
that includes P2 or D is a 7-cut that does not separate S. If D is a 7-cut that does not
separate S then it does not separate S⋆ in G⋆, a case already considered. If D is a 5-cut
that includes P2 then it is non-trivial, in contradiction to Lemma A.2. ✷

Note that J has as many edges as G, which in turn has fewer edges than G⋆. Conse-
quently, J has a mod 3-orientation. In every mod 3-orientation of J , one of the edges of
P1, together with an edge of P2, constitutes the pair of minority edges of C. ✷

Corollary A.8 Consider a quadruple Q of edges of C, let m denote the number of pairs

of edges in Q that are parallel in G. If m+ |S⋆ −Z| ≤ 2 then the compatibility graph L has

two adjacent edges joining edges of C that lie in Q.

Proof: Assume that m + |S⋆ − Z| ≤ 2. Adjust notation so that Q = {e1, e2, e3, e4}. Let
P1 := {e1, e3}, let P2 := {e2, e4}. By the Lemma, L has an edge joining an edge of C
in P1 to an edge of C in P2. Adjust notation so that e1 and e2 are adjacent in L. Let
P ′
1
:= {e1, e2}, P

′
2
:= {e3, e4}. Again, by the Lemma, L has an edge joining ei, i ∈ {1, 2},

to an edge of C in P ′
2
. ✷
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Case 4.2.1 Graph G2 is not simple.

Graph G1 has two vertices of degree three. Thus, G1 and γ are distinct. It follows that the
maximum multiplicity of G1 is two.

Consider first the case in which G2 = γ. It is easy to see that C includes a quadruple
Q which induces in L2 the complete graph on four vertices. The maximum multiplicity
of edges of C in G1 is two. Therefore, there exists a partition {P1, P2} of edges of Q in
two pairs such that the edges of each pair are not parallel in G1. By Lemma A.7, G1 has
a mod 3-orientation such that some edge f1 of P1 and some edge f2 of P2 constitute the
pair of minority edges. But f1 and f2 are adjacent in L2, therefore G2 also has a mod
3-orientation having f1 and f2 as minority edges. In that case, G⋆ has a mod 3-orientation,
a contradiction.

We may thus assume that G2 and γ are distinct. In that case, the maximum multiplicity
of edges of G2 is two. By hypothesis, G2 has parallel edges. Adjust notation so that e1 and
e2 are parallel in G2. Let Y be the set of edges of C − e1 − e2 that are adjacent to e1 in L2.
Note that as e1 and e2 are parallel, then Y is also the set of edges of C − e1 − e2 that are
adjacent to e2 in L2. We assert that |Y | ≥ 3. For this, let P1 := {e1, e2}, let T be a triple
of edges in C − e1− e2. The maximum multiplicity is two, therefore T includes a pair P2 of
edges that are not parallel in G2. By Lemma A.7, one edge of C in P1 is adjacent in L2 to
some edge of C in P2. Edges e1 and e2 are parallel in G2. Thus, both are adjacent in L2

to the edge in P2. This conclusion holds for each triple T that is a subset of C − e1 − e2.
Consequently, |Y | ≥ 3. In sum, each of e1 and e2 is adjacent in L2 to each edge of a set Y
of three or more edges of C − e1 − e2.

Thus, Y includes a pair P3 of edges that are not parallel in G1. Edges e1 and e2 are
parallel in G2 and G⋆ is simple, therefore e1 and e2 are not parallel in G1. By Lemma A.7,
with P3 playing the role of P2, we conclude that an edge in P1 is adjacent to an edge in
P3 in L1. We have seen that every element of P1 is adjacent to every element of P3 in L2.
Thus, L1 and L2 have an edge in common, whence G⋆ has a mod 3-orientation. This is a
contradiction.

Case 4.2.2 Graph G2 is simple.

For this case, we need to introduce a new graph, which we call the crown. This graph is
depicted in Figure 6.

Lemma A.9 If L1 has a quadrilateral or the crown as a subgraph then G⋆ has a mod

3-orientation.

Proof: Consider first the case in which L1 has a quadrilateral Q as a subgraph. Adjust
notation so that Q = (e1, e2, e3, e4). By hypothesis, G2 is simple. By Corollary A.8, L2 has
two adjacent edges whose ends lie in Q. One of them is an edge of L1. Thus, L1 and L2

have a common edge, whence G⋆ has a mod 3-orientation.

Consider next the case in which L1 has the crown as a subgraph. Let H be the graph
obtained from G2 by expanding x on e5 and e6, let x

′ denote the new vertex of H. Let J
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Figure 6: The crown
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Figure 7: The graph J in the proof of Lemma A.9

be the graph obtained from H by expanding x on xx′ and e7. Let x
′′ denote the new vertex

of J (Figure 7).

Let S := S2 ∪{x′, x′′}. We assert that J and S satisfy the hypothesis of the Conjecture.
Cut C is a bond, thus G2 − x is connected, whence J is connected and edges xx′′ and x′x′′

are not bridges. Moreover, G⋆ is 2-edge-connected. Thus, J is 2-edge-connected. Assume,
to the contrary, that J has a 3-cut C3 that does not separate S. The only 3-cut of G2 is
trivial, it has the vertex of S2 as the only vertex of its singleton shore. That cut separates
S. Thus, C3 is not a cut of G2. Consequently, it contains at least one of the edges xx′′ and
x′x′′. If it contains edge x′x′′ then it separates S. We may thus assume that C3 contains
only edge xx′′ not in E(G2). Let D := C3△∂J(x). Vertex x does not lie in S, therefore D
is a cut of G2 that does not separate S. Moreover, it is a k-cut, for k ∈ {2, 4, 6}. Certainly
k 6= 2. Also, k 6= 4, by Lemma A.2. Thus, k = 6. Let Y ⊂ X be a shore of C6. We have
seen that every 6-cut of G⋆ is acyclic. By Corollary 2.7, D separates S⋆. Thus, Y contains
the only vertex of S2, whence D separates S. This is a contradiction.

Graph J has two more edges than G2, which, in turn has no more than |E(G⋆)| − 3
edges. Thus, J has a mod 3-orientation. Consequently, G2 has a mod 3-orientation in which
either e5 and e6 are the minority edges, or e7 is a minority edge, together with one of e1,
e2, e3 and e4. In both alternatives, L2 has an edge in common with L1, whence G⋆ has a
mod 3-orientation. ✷

To complete the proof, recall that graph G1 is not γ, because it contains two vertices of
degree three. Thus, the maximum multiplicity of G1 is two.
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Lemma A.10 If G1 is simple then G⋆ has a mod 3-orientation.

Proof: We shall prove the assertion by proving that L1 has either a quadrilateral or the
crown as a subgraph. Let ∆ denote the maximum degree of vertices of L1. Adjust notation
so that e7 has degree ∆ in L1. Let ei, i = 1, 2, . . . ,∆ denote the neighbours of e7.

Consider first the case in which ∆ ≤ 2. By Corollary A.8, every quadruple of vertices
of L1 spans at least a pair of adjacent edges. Thus, ∆ ≥ 2, whence ∆ = 2. Consider the
quadruple Q1 := {e3, e4, e5, e6}. If Q1 spans a complete graph then L1 has a quadrilateral as
a subgraph. We may thus assume that Q1 does not span a complete graph. Adjust notation
so that e3 and e4 are not adjacent. Consider the quadruple Q2 := {e1, e2, e3, e4}. Vertex
e1 cannot be adjacent to two vertices in Q2, otherwise ∆ ≥ 3, a contradiction. Likewise,
e2 is not adjacent to two vertices of Q2. By Corollary A.8, one of e3 and e4 is adjacent to
two vertices of Q2. Adjust notation so that e3 is adjacent to two vertices of Q2. As e3 and
e4 are not adjacent, then e3, just like e7, is adjacent to both e1 and e2. Thus, L1 has a
quadrilateral. Consider next the case in which ∆ = 3. Let Q3 := {e7, e1, e4, e5}. Vertex e7
is not adjacent to e4, nor to e5. By Lemma A.7, e1 is adjacent to at least one of e4 and e5.
Repeating this reasoning twice, once with e2 playing the role of e1, then e3 playing the role
of e1, we deduce that each vertex in {e1, e2, e3} is adjacent to at least one of e4 and e5. It
follows that one of e4 and e5 is adjacent to at least two vertices in N(e7). Thus, L1 has a
quadrilateral.

Finally, assume that ∆ ≥ 4. If e5 and e6 are adjacent then L1 has the crown as a
subgraph. We may thus assume that e5 and e6 are not adjacent. Consider the quadruple
Q4 := {e1, e2, e5, e6}. If e5 is adjacent to e1 and to e2 then L1 has a quadrilateral. We may
thus assume that e5 is adjacent to at most one vertex of Q4. Likewise, we may assume that
e6 is adjacent to at most one vertex of Q4. By Corollary A.8, one of the vertices in {e1, e2}
is adjacent to two vertices of Q4. Adjust notation so that e1 is adjacent to two vertices of
Q4. We deduce that e1 is adjacent to at least one vertex in {e5, e6}. By repeating a similar
reasoning with other quadruples we deduce that each vertex in {e1, e2, e3} is adjacent to
some vertex in {e5, e6}. Then, one of the vertices in {e5, e6} is adjacent to two or more
vertices in {e1, e2, e3}, whence L1 has a quadrilateral. ✷

Lemma A.11 If G1 is not simple then G⋆ has a mod 3-orientation.

Proof: Let λ denote the number of pairs of edges of C that are parallel in G1. Again, we
show that L1 has either a quadrilateral or the crown as a subgraph.

Consider first the case in which λ = 1. Adjust notation so that e1 and e2 are parallel in
G1. If e1 is adjacent to two vertices in C − e1 − e2 then the same two vertices are adjacent
to e2, whence L1 has a quadrilateral. We may thus assume that e1 is adjacent to at most
one vertex in C − e1 − e2. Adjust notation so that e1 is not adjacent to ei, for i = 3, 4, 5, 6.
If {e3, e4, e5, e6} spans a complete graph then L1 has a quadrilateral. We may thus assume
that it does not span a complete graph. Adjust notation so that e3 and e4 are not adjacent.
Consider the quadruple {e1, e3, e4, e5}. By Corollary A.8, e5 is adjacent to both e3 and e4.
Likewise, e6 is adjacent to both e3 and e4. Thus, L1 has a quadrilateral.



10 REFERENCES

Consider next the case in which λ ≥ 2. Adjust notation so that e1 and e2 are parallel
in G1 and e3 and e4 are also parallel in G1. If e1 is adjacent to e3 then {e1, e2, e3, e4} spans
a quadrilateral (possibly with diagonals). We may thus assume that no vertex in {e1, e2}
is adjacent to any vertex in {e3, e4}.

Let T := {e5, e6, e7}. Consider next the case in which a vertex in T , say, e5, is adjacent
to both e1 and e3 in L1. Then, e5 is adjacent to each of the four vertices in {e1, e2, e3, e4}.
If vertex e3 is adjacent to both e6 and e7, then (e3, e6, e4, e7) is a quadrilateral of L1. We
may thus assume that e3 and e6 are not adjacent. By Lemma A.7, with P1 := {e1, e6}, and
P2 := {e3, e7}, we have that e6 and e7 are adjacent, whence L1 has the crown as a subgraph.

We may thus assume that no vertex in T is adjacent to both e1 and e3. Consider next
the case in which λ = 3. Adjust notation so that e5 and e6 are parallel. We may assume
that no edge of L1 has both ends in {e1, e3, e5}, otherwise L1 has a quadrilateral. Consider
the quadruple {e1, e3, e5, e7}. By Corollary A.8, e7 is adjacent to at least two vertices in
{e1, e3, e5}. We may adjust notation so that e7 is adjacent to both e1 and e3. Thus, T has
a vertex adjacent to both e1 and e3. This is a case that we have already considered. The
assertion holds if λ = 3.

We may thus assume that λ = 2. For any two distinct vertices v and w in T , by
considering the quadruple {e1, e3, v, w}, we observe that v and w are adjacent and one of v
and w is adjacent to one of e1 and e3. Let us derive some consequences of this observation.
The set T spans a triangle in L1. Adjust notation so that e5 is adjacent to e1. One of e6
and e7 is adjacent to a vertex in {e1, e3}. Adjust notation so that e6 is adjacent to a vertex
in {e1, e3}. If e1 is adjacent to any vertex in T − e5 then L1 has a quadrilateral. We may
assume that e5 is the only neighbour of e1 in T and e6 is the only neighbour of e3 in T
(Figure 8).

e1 e2 e3 e4

e5 e6

e7

Figure 8: Illustration for the proof of Lemma A.11

Consider the pairs P1 := {e1, e3} and P2 := {e2, e4}. By Lemma A.7, either e1 is adjacent
to e2 or e3 is adjacent to e4. In both alternatives, L1 has the crown as a subgraph. ✷

The full analysis of the case r = 7 completes the proof of the Main Theorem.
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