3-Flows and Minimal Combs - Supporting Material

Cândida Nunes da Silva, C. L. Lucchesi

Relatório Técnico 13-01- Technical Report 13-01

FACOM - UFMS
August of 2013 - Agosto de 2013

Faculdade de Computação
Universidade Federal de Mato Grosso do Sul
Campo Grande, MS, Brasil

3-Flows and Minimal Combs - Supporting Material

Cândida N. da Silva* Cláudio L. Lucchesi ${ }^{\dagger}$

Submitted April, 2011
Revised August, 2013

A Analysis of 7-Cuts

This is an appendix to the paper "3-Flows and Minimal Combs", by Cândida Nunes da Silva and Cláudio L. Lucchesi [1]. We give here details of the proof of the Main Theorem [1, Theorem 3.1], when $r=7$ (Case 4). We adopt the notation used in the proof of the Main Theorem.

Case $4 r=7$.
Assume that C is a bond but not a comb. A mod 3 -orientation of a 7 -cut C orients five edges, called the majority edges, in one direction and the remaining two, called the minority edges, in the other direction. Therefore, the number of non-similar mod 3 -orientations of C is $\binom{7}{2}=21$. For $i=1,2$, we say that two edges of C are compatible in G_{i} if there is a feasible $\bmod 3$-orientation of C in G_{i} having these two edges as the minority edges. We define the compatibility graph L_{i} of G_{i} as the graph with seven vertices, each representing one edge of C, such that two edges of C are adjacent in L_{i} if and only if they are compatible in G_{i}. We emphasize that if two edges f and g of C are parallel in G_{i} then each edge h of $C-f-g$ is either adjacent to both f and g in L_{i}, or is adjacent to neither f nor g in L_{i}. We say that $\overline{L_{i}}$, the complement of L_{i}, is the incompatibility graph of G_{i}. We denote by ℓ_{i} and $\overline{\ell_{i}}$ the number of edges of L_{i} and $\overline{L_{i}}$, respectively.

We denote by $G:=G_{\star} /(Z \rightarrow z)$ a generic C-contraction of G_{\star}, without specifying whether it is G_{1} or G_{2}. Similarly, we denote by L the compatibility graph of a generic C-contraction G.

Figure 1 depicts graph γ, the only C-contraction of G_{\star} having multiplicity three, as shown in the next result. That graph has 12 feasible non-similar mod 3-orientations.

Lemma A. 1 Let μ denote the maximum multiplicity of edges of G. Then, $\mu \leq 3$, with equality only if G is the graph γ depicted in Figure 1.

[^0]

Figure 1: Graph γ is the only C-contraction of G_{\star} with edge multiplicity three

Proof: Every vertex of G_{\star} has degree three or five. By Lemma $2.3, \mu \leq 3$. Assume that $\mu=3$. Let v_{1} be a vertex of G that is joined to z by three edges. Then, v_{1} has degree five and is joined to $Y:=\bar{Z}-v_{1}$ by two edges, whence $D:=\partial(Y)$ is a 6 -cut. Every 6 -cut of G_{\star} is acyclic. The shore \bar{Y} of D in G_{\star} includes Z. Thus, $G_{\star}[\bar{Y}]$ is cyclic, whence Y is the grip of D. By Corollary 2.7, the possible degree sequences of the vertices of Y are $(5,3)$ and $(3,3)$. Note that Y cannot have both vertices of degree three, otherwise both would be joined to z by two or more edges, a contradiction to Lemma 2.3. Thus, Y has one vertex of degree three, the other of degree five. Moreover, $G_{\star}[Y]$ is connected. We conclude that $G=\gamma$.

Lemma A. 2 Graph G_{2} has no 4-cuts. If C separates S_{\star} then every 5 -cut of G_{1} and every 5 -cut of G_{2} is trivial.

Proof: Let $G:=G_{\star} /(Z \rightarrow z)$ denote a C-contraction of G_{\star}. Let $D:=\partial(Y)$ be a cut of G, such that $4 \leq|D| \leq 5$. Assume also that either D is a non-trivial 5 -cut or D is a 4 -cut. Adjust notation so that $Y \subset \bar{Z}$. Cut D is a comb, its shore Y is a grip. By Corollary 2.7, if $|D|=4$ then Y consists of two vertices, both in S_{\star}, whereas if $|D|=5$ then Y consists of three vertices, all in S_{\star}. If $|D|=5$ then C does not separate S_{\star}. If $|D|=4$ then $\left|S_{\star} \cap V(G)\right| \geq 2$, whence $G \neq G_{2}$.

Case 4.1 Cut C does not separate S_{\star}.
Lemma A. $3 \quad \ell_{1} \geq 3$.
Proof: By hypothesis, $\left|S_{1}\right|=3$, whence $S_{1}=S_{\star}$ and G_{1} is not γ. The multiplicity μ of edges of G_{1} satisfies $\mu \leq 2$. Let $\mathcal{D}:=\left\{D_{1}, D_{2}, \ldots, D_{r}\right\}$ be a collection of non-similar mod 3 -orientations of G_{1}. Graph G_{1} has a mod 3-orientation, D_{1}. Thus, $r \geq 1$. Suppose $r<3$. We will show that G_{1} has a mod 3-orientation that is not similar to any of the orientations in \mathcal{D}. Note that three or more edges of C are majority edges in all orientations of \mathcal{D}. In fact, if $r=1$ five of them are majority edges and if $r=2$ at least three of them are majority
edges on both orientations. Adjust notation so that edges $e_{i}:=\bar{x} v_{i}, i=1,2,3$, are majority edges in all mod 3 -orientations of \mathcal{D}.

Let $T:=\left\{e_{1}, e_{2}, e_{3}\right\}$. As G_{1} and γ are distinct, then at least two edges in T are not parallel in G. Adjust notation so that e_{1} and e_{2} are not parallel. Let H_{12} be the graph obtained from G_{1} by splitting the contraction vertex \bar{x} of G_{1} on e_{1} and e_{2}. Assume that H_{12}, together with S_{\star}, does not satisfy the hypothesis of the Conjecture. By Lemma 2.4, G_{1} has a 5 -cut D_{12} that contains both e_{1} and e_{2} but does not separate S_{\star}. As D_{12} contains both e_{1} and e_{2}, it follows that D_{12} is non-trivial. By Lemma 2.1, D_{12} is a comb and its grip Y_{12} consists of the three vertices of degree three of S_{\star}. Whence, v_{1} and v_{2} are vertices of S_{\star}. By Lemma 2.3, they are joined to \bar{x} by one single edge. Then, e_{3} is not parallel with any of e_{1} and e_{2}. Repeating the reasoning above with e_{3} playing the role of e_{2}, we deduce that G_{1} has a 5 -comb D_{13} that contains e_{3} and whose grip consists of the three vertices of S_{\star}. We conclude that $S_{\star}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Moreover, $D_{12}=D_{13}$. Therefore, the three edges of T lie in a 5 -comb of G_{1} whose grip is S_{\star}. This is a contradiction, as every mod 3-orientation of G_{1} orients two of the edges of T in one direction, the third edge in the other direction (Figure 2).

Figure 2: Illustration for the proof of Lemma A. 3
Assume, without loss of generality, that H_{12}, together with S_{\star}, satisfies the hypothesis of the Conjecture. Graph H_{12} has as many edges as G_{1}, which in turn has fewer edges than G_{\star}. Thus, H_{12} has a mod 3-orientation, D_{2}. Therefore, D_{2} is a mod 3-orientation of G_{1} such that one of e_{1} and e_{2} is a minority edge. Hence, D_{2} is not similar to any of the mod 3 -orientations in \mathcal{D}. We conclude that G_{1} has at least three non-similar mod 3 -orientations, as asserted.

Lemma A. $4 \overline{\ell_{2}} \leq 2$.

Proof: In the proof of this assertion, we use Lemmas A. 5 and A. 6 shown below.
Lemma A. 5 The edges of the incompatibility graph $\overline{L_{2}}$ are pairwise adjacent.
Proof: Let P_{1} and P_{2} be two disjoint pairs of edges of C. We must show that at least one of P_{1} and P_{2} is compatible, that is, there exists a mod 3 -orientation of G_{2} such that one of P_{1} and P_{2} is the pair of minority edges. For this, assume, without loss of generality,

Figure 3: Graphs H and J in the proof of Lemma A. 5
that $P_{1}=\left\{e_{1}, e_{2}\right\}$ and $P_{2}=\left\{e_{3}, e_{4}\right\}$. Let $P:=P_{1} \cup P_{2}, P^{\prime}:=\left\{e_{5}, e_{6}, e_{7}\right\}$. Let H be the graph obtained from G_{2} by splitting x on $\left\{P, P^{\prime}\right\}$ (Figure 3). Let x^{\prime} denote the new vertex of H. Let J be the graph obtained from H by expanding x on e_{3} and e_{4}. Let $x^{\prime \prime}$ denote the new vertex of J (Figure 3). Let $S_{J}:=\left\{x, x^{\prime}, x^{\prime \prime}\right\}$. We assert that J and S_{J} satisfy the hypothesis of the Conjecture.

Cut C is a bond, therefore $G_{\star}[\bar{X}]$ is connected. Thus, J is connected and edge $x x^{\prime \prime}$ is not a bridge. Assume, to the contrary, that J has an 1-cut C_{1}. Then C_{1} separates $\left\{x, x^{\prime}\right\}$ but is not edge $x x^{\prime \prime}$, whence $C_{1} \cup\left\{e_{5}, e_{6}, e_{7}\right\}$ is a 4 -cut of G_{2}, a contradiction to Lemma A.2. Thus, J is 2-edge-connected. Graph G_{2} is free of vertices of degree three, therefore every 3 -cut of J separates S_{J}. We deduce that J and S_{J} satisfy the hypothesis of the Conjecture.

Finally, J has one more edge than G_{2}, which in turn has no more than $\left|E\left(G_{\star}\right)\right|-3$ edges. Thus, J has fewer edges than G_{\star}, whence it has a mod 3 -orientation. Consequently, G_{2} has a mod 3-orientation in which one of P_{1} and P_{2} is the pair of minority edges. Thus, one of P_{1} and P_{2} is compatible. This conclusion holds for each pair P_{1}, P_{2} of disjoint pairs of edges of C. As asserted, any two edges of $\overline{L_{2}}$ are adjacent.

Lemma A. 6 For every pair P of non-parallel edges of C, every edge of $C-P$ is adjacent in L_{2} to at least one edge in P.

Proof: Adjust notation so that $P=\left\{e_{1}, e_{2}\right\}$. Let $S:=\{x\}=S_{\star} /(X \rightarrow x)$. Let H be the graph resulting from G_{2} by the splitting of x on e_{1} and e_{2} (Figure 4). Let w be the new vertex of H. Let J be the graph obtained from H by expanding x on e_{4} and e_{5} and then expanding again on e_{6} and e_{7}. Let x^{\prime} and $x^{\prime \prime}$ denote the two new vertices of J, where x^{\prime} is incident with e_{4} and e_{5}, and $x^{\prime \prime}$ is incident with e_{6} and e_{7} (Figure 4). Let $S_{J}:=\left\{x, x^{\prime}, x^{\prime \prime}\right\}$. By Corollary $2.5, H$ and S satisfy the hypothesis of the Conjecture. Moreover, as C is a bond, vertex x is not a cut vertex of H. Thus, J and S_{J} also satisfy the hypothesis of the Conjecture. Graph J has two more edges than G_{2}, which in turn has no more than $\left|E\left(G_{\star}\right)\right|-3$ edges. Thus, J has a mod 3 -orientation. We conclude that one of e_{1} and e_{2} is adjacent to e_{3} in L_{2}. This conclusion holds for each edge e_{3} in $C-P$.

We may now resume the proof of Lemma A.4. Graphs G_{2} and γ are distinct. Suppose to the contrary that $\overline{L_{2}}$ has at least three edges. By Lemma A.5, all edges of $\overline{L_{2}}$ are pairwise

Figure 4: Graphs H and J in the proof of Lemma A. 6
adjacent. Thus, either $\overline{L_{2}}$ has a triangle or a three pointed star. Consider first the case in which $\overline{L_{2}}$ has a triangle. Adjust notation so that $e_{1} e_{2}, e_{1} e_{3}$ and $e_{2} e_{3}$ are the edges of the triangle. Then, by Lemma A.6, the three edges e_{1}, e_{2} and e_{3} of cut C are parallel in G_{2}, a contradiction, as G_{2} is not γ. We may thus assume that $\overline{L_{2}}$ has a three pointed star. Adjust notation so that $e_{1} e_{2}, e_{1} e_{3}$ and $e_{1} e_{4}$ are the edges of the star. Then, by Lemma A.6, the three edges e_{2}, e_{3} and e_{4} of cut C are parallel in G_{2}, again a contradiction. In fact, $\overline{L_{2}}$ has at most two edges.

We are now in condition to prove the Theorem for this case. By Lemma A.3, $\ell_{1} \geq 3$. By Lemma A. $4, \ell_{2} \geq 19$. Thus, $\ell_{1}+\ell_{2}>21$, whence C has a $\bmod 3$-orientation that is feasible in both G_{1} and G_{2}. Consequently, G_{\star} has a mod 3-orientation, a contradiction.

Case 4.2 Cut C separates S_{\star}.

Lemma A. 7 (Double Splitting) Let $G:=G_{\star} /(Z \rightarrow z)$ be a generic C-contraction of G_{\star}. Consider the pair $\mathcal{P}:=\left\{P_{1}, P_{2}\right\}$, where P_{1} and P_{2} are disjoint pairs of edges of C. Let m denote the number of pairs P_{i} in \mathcal{P} that consist of parallel edges. If $m+\left|S_{\star}-Z\right| \leq 2$ then the compatibility graph L has an edge joining an edge of C in P_{1} to an edge of C in P_{2}.
 the edges in P_{2} are not parallel. Adjust notation so that $P_{1}=\left\{e_{1}, e_{2}\right\}$ and $P_{2}=\left\{e_{3}, e_{4}\right\}$. Define S to be

$$
S:= \begin{cases}S_{\star} /(Z \rightarrow z), & \text { if } v_{1} \neq v_{2} \\ \left\{v_{1}\right\} \cup\left(S_{\star} /(Z \rightarrow z)\right), & \text { otherwise }\end{cases}
$$

Note that the contraction vertex z lies in $S_{\star} /(Z \rightarrow z)$. Thus,

$$
|S|=m+\left|S_{\star} /(Z \rightarrow z)\right|=m+\left|S_{\star}-Z\right|+1 \leq 3 .
$$

Let H denote the graph obtained from G by splitting z on e_{1} and e_{2}. Let z^{\prime} denote the new vertex of H (Figure 5). Let J be the graph obtained from H by splitting z on e_{3} and e_{4}. Let $z^{\prime \prime}$ denote the new vertex of J.

Figure 5: A double splitting

Claim Graph J, together with S, satisfies the hypothesis of the Conjecture.
Proof: Assume the contrary. By hypothesis, C is a bond, thus J is connected. We may thus assume that J has a cut D_{J} that is either a 3 -cut that does not separate S or a 1-cut. By Corollary 2.5, graph H, together with S, satisfies the hypothesis of the Conjecture. Thus, D_{J} is not a cut of H. We conclude that H has a cut D_{H} that includes P_{2} and such that either D_{H} is a 3 -cut or D_{H} is a 5 -cut that does not separate S.

We assert that G contains a cut D that includes P_{2} and either it is a 7 -cut that does not separate S or it is 5 -cut of G. For this, consider first the case in which D_{H} is a cut of G. As D_{H} includes P_{2}, in turn a pair of non-parallel edges, D_{H} cannot be a 3 -cut. In that case, D_{H} is a 5 -cut of G that includes P_{2}. Alternatively, consider next the case in which D_{H} is not a cut of G. In that case, $D_{H} \cup P_{1}$ is a cut of G. Moreover, if D_{H} does not separate S then neither does $D_{H} \cup P_{1}$. We conclude that G has a cut D such that either D is a 5 -cut that includes P_{2} or D is a 7 -cut that does not separate S. If D is a 7 -cut that does not separate S then it does not separate S_{\star} in G_{\star}, a case already considered. If D is a 5 -cut that includes P_{2} then it is non-trivial, in contradiction to Lemma A.2.

Note that J has as many edges as G, which in turn has fewer edges than G_{\star}. Consequently, J has a mod 3 -orientation. In every mod 3 -orientation of J, one of the edges of P_{1}, together with an edge of P_{2}, constitutes the pair of minority edges of C.

Corollary A. 8 Consider a quadruple Q of edges of C, let m denote the number of pairs of edges in Q that are parallel in G. If $m+\left|S_{\star}-Z\right| \leq 2$ then the compatibility graph L has two adjacent edges joining edges of C that lie in Q.

Proof: Assume that $m+\left|S_{\star}-Z\right| \leq 2$. Adjust notation so that $Q=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Let $P_{1}:=\left\{e_{1}, e_{3}\right\}$, let $P_{2}:=\left\{e_{2}, e_{4}\right\}$. By the Lemma, L has an edge joining an edge of C in P_{1} to an edge of C in P_{2}. Adjust notation so that e_{1} and e_{2} are adjacent in L. Let $P_{1}^{\prime}:=\left\{e_{1}, e_{2}\right\}, P_{2}^{\prime}:=\left\{e_{3}, e_{4}\right\}$. Again, by the Lemma, L has an edge joining $e_{i}, i \in\{1,2\}$, to an edge of C in P_{2}^{\prime}.

Case 4.2.1 Graph G_{2} is not simple.
Graph G_{1} has two vertices of degree three. Thus, G_{1} and γ are distinct. It follows that the maximum multiplicity of G_{1} is two.

Consider first the case in which $G_{2}=\gamma$. It is easy to see that C includes a quadruple Q which induces in L_{2} the complete graph on four vertices. The maximum multiplicity of edges of C in G_{1} is two. Therefore, there exists a partition $\left\{P_{1}, P_{2}\right\}$ of edges of Q in two pairs such that the edges of each pair are not parallel in G_{1}. By Lemma A.7, G_{1} has a mod 3-orientation such that some edge f_{1} of P_{1} and some edge f_{2} of P_{2} constitute the pair of minority edges. But f_{1} and f_{2} are adjacent in L_{2}, therefore G_{2} also has a mod 3 -orientation having f_{1} and f_{2} as minority edges. In that case, G_{\star} has a mod 3-orientation, a contradiction.

We may thus assume that G_{2} and γ are distinct. In that case, the maximum multiplicity of edges of G_{2} is two. By hypothesis, G_{2} has parallel edges. Adjust notation so that e_{1} and e_{2} are parallel in G_{2}. Let Y be the set of edges of $C-e_{1}-e_{2}$ that are adjacent to e_{1} in L_{2}. Note that as e_{1} and e_{2} are parallel, then Y is also the set of edges of $C-e_{1}-e_{2}$ that are adjacent to e_{2} in L_{2}. We assert that $|Y| \geq 3$. For this, let $P_{1}:=\left\{e_{1}, e_{2}\right\}$, let T be a triple of edges in $C-e_{1}-e_{2}$. The maximum multiplicity is two, therefore T includes a pair P_{2} of edges that are not parallel in G_{2}. By Lemma A.7, one edge of C in P_{1} is adjacent in L_{2} to some edge of C in P_{2}. Edges e_{1} and e_{2} are parallel in G_{2}. Thus, both are adjacent in L_{2} to the edge in P_{2}. This conclusion holds for each triple T that is a subset of $C-e_{1}-e_{2}$. Consequently, $|Y| \geq 3$. In sum, each of e_{1} and e_{2} is adjacent in L_{2} to each edge of a set Y of three or more edges of $C-e_{1}-e_{2}$.

Thus, Y includes a pair P_{3} of edges that are not parallel in G_{1}. Edges e_{1} and e_{2} are parallel in G_{2} and G_{\star} is simple, therefore e_{1} and e_{2} are not parallel in G_{1}. By Lemma A.7, with P_{3} playing the role of P_{2}, we conclude that an edge in P_{1} is adjacent to an edge in P_{3} in L_{1}. We have seen that every element of P_{1} is adjacent to every element of P_{3} in L_{2}. Thus, L_{1} and L_{2} have an edge in common, whence G_{\star} has a mod 3 -orientation. This is a contradiction.

Case 4.2.2 Graph G_{2} is simple.
For this case, we need to introduce a new graph, which we call the crown. This graph is depicted in Figure 6.

Lemma A. 9 If L_{1} has a quadrilateral or the crown as a subgraph then G_{\star} has a mod 3-orientation.

Proof: Consider first the case in which L_{1} has a quadrilateral Q as a subgraph. Adjust notation so that $Q=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$. By hypothesis, G_{2} is simple. By Corollary A.8, L_{2} has two adjacent edges whose ends lie in Q. One of them is an edge of L_{1}. Thus, L_{1} and L_{2} have a common edge, whence G_{\star} has a mod 3 -orientation.

Consider next the case in which L_{1} has the crown as a subgraph. Let H be the graph obtained from G_{2} by expanding x on e_{5} and e_{6}, let x^{\prime} denote the new vertex of H. Let J

Figure 6: The crown

Figure 7: The graph J in the proof of Lemma A. 9
be the graph obtained from H by expanding x on $x x^{\prime}$ and e_{7}. Let $x^{\prime \prime}$ denote the new vertex of J (Figure 7).

Let $S:=S_{2} \cup\left\{x^{\prime}, x^{\prime \prime}\right\}$. We assert that J and S satisfy the hypothesis of the Conjecture. Cut C is a bond, thus $G_{2}-x$ is connected, whence J is connected and edges $x x^{\prime \prime}$ and $x^{\prime} x^{\prime \prime}$ are not bridges. Moreover, G_{\star} is 2 -edge-connected. Thus, J is 2 -edge-connected. Assume, to the contrary, that J has a 3 -cut C_{3} that does not separate S. The only 3 -cut of G_{2} is trivial, it has the vertex of S_{2} as the only vertex of its singleton shore. That cut separates S. Thus, C_{3} is not a cut of G_{2}. Consequently, it contains at least one of the edges $x x^{\prime \prime}$ and $x^{\prime} x^{\prime \prime}$. If it contains edge $x^{\prime} x^{\prime \prime}$ then it separates S. We may thus assume that C_{3} contains only edge $x x^{\prime \prime}$ not in $E\left(G_{2}\right)$. Let $D:=C_{3} \triangle \partial_{J}(x)$. Vertex x does not lie in S, therefore D is a cut of G_{2} that does not separate S. Moreover, it is a k-cut, for $k \in\{2,4,6\}$. Certainly $k \neq 2$. Also, $k \neq 4$, by Lemma A.2. Thus, $k=6$. Let $Y \subset \bar{X}$ be a shore of C_{6}. We have seen that every 6 -cut of G_{\star} is acyclic. By Corollary $2.7, D$ separates S_{\star}. Thus, Y contains the only vertex of S_{2}, whence D separates S. This is a contradiction.

Graph J has two more edges than G_{2}, which, in turn has no more than $\left|E\left(G_{\star}\right)\right|-3$ edges. Thus, J has a mod 3 -orientation. Consequently, G_{2} has a mod 3 -orientation in which either e_{5} and e_{6} are the minority edges, or e_{7} is a minority edge, together with one of e_{1}, e_{2}, e_{3} and e_{4}. In both alternatives, L_{2} has an edge in common with L_{1}, whence G_{\star} has a mod 3 -orientation.

To complete the proof, recall that graph G_{1} is not γ, because it contains two vertices of degree three. Thus, the maximum multiplicity of G_{1} is two.

Lemma A. 10 If G_{1} is simple then G_{\star} has a mod 3-orientation.

Proof: We shall prove the assertion by proving that L_{1} has either a quadrilateral or the crown as a subgraph. Let Δ denote the maximum degree of vertices of L_{1}. Adjust notation so that e_{7} has degree Δ in L_{1}. Let $e_{i}, i=1,2, \ldots, \Delta$ denote the neighbours of e_{7}.

Consider first the case in which $\Delta \leq 2$. By Corollary A.8, every quadruple of vertices of L_{1} spans at least a pair of adjacent edges. Thus, $\Delta \geq 2$, whence $\Delta=2$. Consider the quadruple $Q_{1}:=\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}$. If Q_{1} spans a complete graph then L_{1} has a quadrilateral as a subgraph. We may thus assume that Q_{1} does not span a complete graph. Adjust notation so that e_{3} and e_{4} are not adjacent. Consider the quadruple $Q_{2}:=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Vertex e_{1} cannot be adjacent to two vertices in Q_{2}, otherwise $\Delta \geq 3$, a contradiction. Likewise, e_{2} is not adjacent to two vertices of Q_{2}. By Corollary A.8, one of e_{3} and e_{4} is adjacent to two vertices of Q_{2}. Adjust notation so that e_{3} is adjacent to two vertices of Q_{2}. As e_{3} and e_{4} are not adjacent, then e_{3}, just like e_{7}, is adjacent to both e_{1} and e_{2}. Thus, L_{1} has a quadrilateral. Consider next the case in which $\Delta=3$. Let $Q_{3}:=\left\{e_{7}, e_{1}, e_{4}, e_{5}\right\}$. Vertex e_{7} is not adjacent to e_{4}, nor to e_{5}. By Lemma A.7, e_{1} is adjacent to at least one of e_{4} and e_{5}. Repeating this reasoning twice, once with e_{2} playing the role of e_{1}, then e_{3} playing the role of e_{1}, we deduce that each vertex in $\left\{e_{1}, e_{2}, e_{3}\right\}$ is adjacent to at least one of e_{4} and e_{5}. It follows that one of e_{4} and e_{5} is adjacent to at least two vertices in $N\left(e_{7}\right)$. Thus, L_{1} has a quadrilateral.

Finally, assume that $\Delta \geq 4$. If e_{5} and e_{6} are adjacent then L_{1} has the crown as a subgraph. We may thus assume that e_{5} and e_{6} are not adjacent. Consider the quadruple $Q_{4}:=\left\{e_{1}, e_{2}, e_{5}, e_{6}\right\}$. If e_{5} is adjacent to e_{1} and to e_{2} then L_{1} has a quadrilateral. We may thus assume that e_{5} is adjacent to at most one vertex of Q_{4}. Likewise, we may assume that e_{6} is adjacent to at most one vertex of Q_{4}. By Corollary A.8, one of the vertices in $\left\{e_{1}, e_{2}\right\}$ is adjacent to two vertices of Q_{4}. Adjust notation so that e_{1} is adjacent to two vertices of Q_{4}. We deduce that e_{1} is adjacent to at least one vertex in $\left\{e_{5}, e_{6}\right\}$. By repeating a similar reasoning with other quadruples we deduce that each vertex in $\left\{e_{1}, e_{2}, e_{3}\right\}$ is adjacent to some vertex in $\left\{e_{5}, e_{6}\right\}$. Then, one of the vertices in $\left\{e_{5}, e_{6}\right\}$ is adjacent to two or more vertices in $\left\{e_{1}, e_{2}, e_{3}\right\}$, whence L_{1} has a quadrilateral.

Lemma A. 11 If G_{1} is not simple then G_{\star} has a mod 3-orientation.
Proof: Let λ denote the number of pairs of edges of C that are parallel in G_{1}. Again, we show that L_{1} has either a quadrilateral or the crown as a subgraph.

Consider first the case in which $\lambda=1$. Adjust notation so that e_{1} and e_{2} are parallel in G_{1}. If e_{1} is adjacent to two vertices in $C-e_{1}-e_{2}$ then the same two vertices are adjacent to e_{2}, whence L_{1} has a quadrilateral. We may thus assume that e_{1} is adjacent to at most one vertex in $C-e_{1}-e_{2}$. Adjust notation so that e_{1} is not adjacent to e_{i}, for $i=3,4,5,6$. If $\left\{e_{3}, e_{4}, e_{5}, e_{6}\right\}$ spans a complete graph then L_{1} has a quadrilateral. We may thus assume that it does not span a complete graph. Adjust notation so that e_{3} and e_{4} are not adjacent. Consider the quadruple $\left\{e_{1}, e_{3}, e_{4}, e_{5}\right\}$. By Corollary A.8, e_{5} is adjacent to both e_{3} and e_{4}. Likewise, e_{6} is adjacent to both e_{3} and e_{4}. Thus, L_{1} has a quadrilateral.

Consider next the case in which $\lambda \geq 2$. Adjust notation so that e_{1} and e_{2} are parallel in G_{1} and e_{3} and e_{4} are also parallel in G_{1}. If e_{1} is adjacent to e_{3} then $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ spans a quadrilateral (possibly with diagonals). We may thus assume that no vertex in $\left\{e_{1}, e_{2}\right\}$ is adjacent to any vertex in $\left\{e_{3}, e_{4}\right\}$.

Let $T:=\left\{e_{5}, e_{6}, e_{7}\right\}$. Consider next the case in which a vertex in T, say, e_{5}, is adjacent to both e_{1} and e_{3} in L_{1}. Then, e_{5} is adjacent to each of the four vertices in $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. If vertex e_{3} is adjacent to both e_{6} and e_{7}, then $\left(e_{3}, e_{6}, e_{4}, e_{7}\right)$ is a quadrilateral of L_{1}. We may thus assume that e_{3} and e_{6} are not adjacent. By Lemma A.7, with $\mathcal{P}_{1}:=\left\{e_{1}, e_{6}\right\}$, and $P_{2}:=\left\{e_{3}, e_{7}\right\}$, we have that e_{6} and e_{7} are adjacent, whence L_{1} has the crown as a subgraph.

We may thus assume that no vertex in T is adjacent to both e_{1} and e_{3}. Consider next the case in which $\lambda=3$. Adjust notation so that e_{5} and e_{6} are parallel. We may assume that no edge of L_{1} has both ends in $\left\{e_{1}, e_{3}, e_{5}\right\}$, otherwise L_{1} has a quadrilateral. Consider the quadruple $\left\{e_{1}, e_{3}, e_{5}, e_{7}\right\}$. By Corollary A. $8, e_{7}$ is adjacent to at least two vertices in $\left\{e_{1}, e_{3}, e_{5}\right\}$. We may adjust notation so that e_{7} is adjacent to both e_{1} and e_{3}. Thus, T has a vertex adjacent to both e_{1} and e_{3}. This is a case that we have already considered. The assertion holds if $\lambda=3$.

We may thus assume that $\lambda=2$. For any two distinct vertices v and w in T, by considering the quadruple $\left\{e_{1}, e_{3}, v, w\right\}$, we observe that v and w are adjacent and one of v and w is adjacent to one of e_{1} and e_{3}. Let us derive some consequences of this observation. The set T spans a triangle in L_{1}. Adjust notation so that e_{5} is adjacent to e_{1}. One of e_{6} and e_{7} is adjacent to a vertex in $\left\{e_{1}, e_{3}\right\}$. Adjust notation so that e_{6} is adjacent to a vertex in $\left\{e_{1}, e_{3}\right\}$. If e_{1} is adjacent to any vertex in $T-e_{5}$ then L_{1} has a quadrilateral. We may assume that e_{5} is the only neighbour of e_{1} in T and e_{6} is the only neighbour of e_{3} in T (Figure 8).

Figure 8: Illustration for the proof of Lemma A. 11
Consider the pairs $\mathcal{P}_{1}:=\left\{e_{1}, e_{3}\right\}$ and $\mathcal{P}_{2}:=\left\{e_{2}, e_{4}\right\}$. By Lemma A.7, either e_{1} is adjacent to e_{2} or e_{3} is adjacent to e_{4}. In both alternatives, L_{1} has the crown as a subgraph.

The full analysis of the case $r=7$ completes the proof of the Main Theorem.

References

[1] C. N. da Silva and C. L. Lucchesi. 3-Flows and minimal combs. Submitted, 2013.

List of Assertions

Lemma A. 1 \{lem:gamma\} 2
Let μ denote the maximum multiplicity of edges of G. Then, $\mu \leq 3$, with equality only ifG is the graph γ depicted in Figure 1.
Lemma A. 2 \{lem:no4-no5non-trivial\} 2
Graph G_{2} has no 4 -cuts. If C separates S_{\star} then every 5 -cut of G_{1} and every 5 -cut of G_{2} istrivial.
Lemma A. 3 \{lem:7-3\} 2
$\ell_{1} \geq 3$.
Lemma A. 4 \{lem:7-0\} 3
$\overline{\ell_{2}} \leq 2$.
Lemma A. 5 \{lem:7-0-sem-pares-disjuntos\} 3The edges of the incompatibility graph $\overline{L_{2}}$ are pairwise adjacent.Lemma A. 6 \{lem:7-0-paralelas $\}$4
For every pair P of non-parallel edges of C, every edge of $C-P$ is adjacent in L_{2} to atleast one edge in P.
Lemma A. 7 \{lem:double-splitting\} 5(Double Splitting) Let $G:=G_{\star} /(Z \rightarrow z)$ be a generic C-contraction of G_{\star}. Considerthe pair $\mathcal{P}:=\left\{P_{1}, P_{2}\right\}$, where P_{1} and P_{2} are disjoint pairs of edges of C. Let m denotethe number of pairs P_{i} in \mathcal{P} that consist of parallel edges. If $m+\left|S_{\star}-Z\right| \leq 2$ then thecompatibility graph L has an edge joining an edge of C in P_{1} to an edge of C in P_{2}.

Corollary A. 8 \{cor: double-splitting\}6Consider a quadruple Q of edges of C, let m denote the number of pairs of edges in Q thatare parallel in G. If $m+\left|S_{\star}-Z\right| \leq 2$ then the compatibility graph L has two adjacentedges joining edges of C that lie in Q.
Lemma A. 9 \{lem: Q-crown\} 7
If L_{1} has a quadrilateral or the crown as a subgraph then G_{\star} has a mod 3-orientation.
Lemma A. 10 9
If G_{1} is simple then G_{\star} has a mod 3-orientation.
Lemma A. 11 \{lem:7-2:G1-not-simple\} 9If G_{1} is not simple then G_{\star} has a mod 3 -orientation.

[^0]: *Federal University of São Carlos - ufscar, Sorocaba, SP, Brazil. Support by fapesp and capes
 ${ }^{\dagger}$ Faculty of Computing, FACOM-UFMS, Campo Grande, MS, Brazil. Support by CNPq and CAPES

