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Abstract

Little [11] showed that, in a certain sense, the only minimal non-Pfaffian
bipartite matching covered graph is the brace K3,3. Using a stronger notion
of minimality than the one used by Little, we show that every minimal non-
Pfaffian brick G contains two disjoint odd cycles C1 and C2 such that the
subgraph G − V (C1 ∪ C2) has a perfect matching. This implies that the only
minimal non-Pfaffian solid matching covered graph is the braceK3,3. (A match-
ing covered graph G is solid if, for any two disjoint odd cycles C1 and C2 of G,
the subgraph G − V (C1 ∪ C2) has no perfect matching. Solid matching cov-
ered graphs constitute a natural generalization of the class of bipartite graphs,
see [5].)

Keywords Perfect matchings, matching covered graphs, solid matching cov-
ered graphs, Pfaffian orientations.
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1 Introduction

An edge of a graph is admissible if there is a perfect matching of the graph that
contains it. A graph is matching covered if it is a nontrivial connected graph in
which each edge is admissible. Unless otherwise specified, all graphs considered
in this paper are matching covered. For general graph-theoretical notation and
terminology, we follow Bondy and Murty [1]; and the terminology we use that is
specific to matching covered graphs is essentially the same as in the pioneering paper
of Lovász [13], in the book Matching Theory by Lovász and Plummer [14], and in
our papers [2], [3] and [4]. However, in some cases, we have chosen to adopt new
notation and terminology; these will be introduced in due course.

1.1 The Pfaffian orientation problem

Let D be an orientation of a matching covered graph G. With each perfect matching
M = {e1, e2, . . . , ek} of D, where, for 1 ≤ i ≤ k, ui and vi denote, respectively, the
tail and the head of ei, we associate the permutation π(M), where:

π(M) :=

(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)

The sign of M , denote by sgn(M), is the sign of the permutation π(M). It can be
seen that sgn(M) is independent of the order in which the arcs of M are enumerated.
In the digraph shown in Figure 1, the permutations corresponding to all perfect
matchings are odd, and hence all of them have negative sign. (Note that a necessary
condition for all perfect matchings to have the same sign is that, for any two adjacent
edges u and v, all edges are directed either from u to v, or all of them are directed
from v to u.)

When all the perfect matchings of a digraph D have the same sign, it is known
that the determinant of the adjacency matrix A of D is equal to the square of the
number of perfect matchings of D. (The square root of the determinant of an even
order skew-symmetric matrix A is known as the Pfaffian of A. In the special case
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Figure 1: A digraph and its adjacency matrix

under consideration, the absolute value of the Pfaffian of A is the number of perfect
matchings of D. See Lovász and Plummer [14, Chapter 8] for details.) For example,
the digraph shown in Figure 1 has nine perfect matchings, and the determinant of
its adjacency matrix is eighty-one.

Motivated by the above observation, a digraph is called Pfaffian if all its perfect
matchings have the same sign. In the same vein, an (undirected) graph is Pfaffian
if it admits an orientation that is Pfaffian. (It should be noted that, although the
signs of perfect matchings of a digraph do depend on the chosen enumeration of
its vertices, the property of the digraph being Pfaffian or non-Pfaffian is indepen-
dent of that enumeration. More generally, two isomorphic digraphs are either both
Pfaffian or both non-Pfaffian.) The digraph shown in Figure 1 is Pfaffian, but the
digraph obtained from it by reversing the orientation of the edge 23, and leaving
the orientations of all other edges as they are, is not Pfaffian.

The above definitions lead to the following important decision problems:

Problem 1.1 (The Pfaffian Recognition Problem)
Given a digraph D, decide whether D is Pfaffian.

Problem 1.2 (The Pfaffian Orientation Problem)
Given a graph G, decide whether G has a Pfaffian orientation.

Surprisingly, it is known that Problems 1.1 and 1.2 are polynomially equiva-
lent [6, 21]. There are three important special classes of graphs for which these
problems are known to be in P.

Kasteleyn [10] showed that every planar graph is Pfaffian and described a poly-
nomial-time algorithm for finding a Pfaffian orientation of a planar graph.

Little [11] showed that the Pfaffian Recognition Problem is in co-NP (see Theo-
rem 4.2) for bipartite graphs. Several years later, McCuaig [15] and, independently,
Robertson, Seymour and Thomas [19], showed that, for bipartite graphs, this prob-
lem is in P. (Their work is of major significance because it is related to a number
of fundamental, and seemingly unrelated, problems in algorithmic graph theory.)

A graph G is near-bipartite if it is matching covered, not bipartite but it has
a pair of edges whose removal yields a bipartite matching covered graph. Fischer
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and Little [9] showed that the Pfaffian Recognition Problem is in co-NP for near-
bipartite graphs. Recently, Miranda and Lucchesi [17] discovered a polynomial
algorithm to solve the Pfaffian problem for near-bipartite graphs.

In this paper we introduce the notion of a deletion-contraction minor of a match-
ing covered graph, and establish the structural result concerning minor-minimal
non-Pfaffian matching covered graphs mentioned in the abstract. As a consequence,
we deduce that the Pfaffian Recognition Problem is in co-NP for solid matching
covered graphs. (We do not yet know if it is in NP.)

1.2 Conformal subgraphs

A subgraph H of a graph G is conformal if G − V (H) has a perfect matching.
(Conformal subgraphs are called nice subgraphs in [14], well-fitted subgraphs in [15]
and central subgraphs in [19].) As an immediate consequence of this definition, it
follows that if F is a conformal subgraph of H and H is a conformal subgraph of
G, then F is a conformal subgraph of G. The notion of a conformal subgraph, as
we shall now explain, may be used to provide two useful alternative definitions of a
Pfaffian graph.

Let D be a digraph and let T be a trail of even length in D. Regardless of the
sense of traversal of T , the number of forward arcs and the number of reverse arcs
have the same parity. We say that T is evenly oriented if the number of forward
arcs is even and oddly oriented otherwise. For example, in the digraph shown in
Figure 2, the cycle (1, 2, 3, 4, 1) is evenly oriented whereas the cycle (1, 4, 5, 6, 1) is
oddly oriented.

1

2

3

4

5

6

Figure 2: An orientation of K3,3

The following basic result, relating the signs of two perfect matchings, is proved
in Lovász and Plummer’s book [14, Lemma 8.3.1].

Lemma 1.3
Let M and N be two perfect matchings of a directed graph D and let ℓ de-
note the number of (M,N)-alternating cycles that are evenly oriented. Then,
sgn(M) sgn(N) = (−1)ℓ.
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Corollary 1.4
Let D be a directed graph and let M a perfect matching of D. Then, D is Pfaffian
if and only if each M -alternating cycle of D is oddly oriented.

Corollary 1.5
A digraph D is Pfaffian if and only if each conformal cycle in D is oddly oriented.

In light of the above corollary, one may deduce that the digraph D in Figure 2 is
not Pfaffian simply from the fact that the cycle (1, 2, 3, 4, 1) is conformal and evenly
oriented. This, of course, does not immediately imply that K3,3 is non-Pfaffian.
However, K3,3 is non-Pfaffian and, indeed, it is the smallest non-Pfaffian matching
covered graph. The following proposition may be verified easily.

Proposition 1.6
A matching covered graph G is Pfaffian if and only if each of its conformal subgraphs
is Pfaffian.

2 Cuts, Contractions and Splicings

Let G be a connected graph. For any set X of vertices of G, we denote the cobound-
ary of X by ∂G(X). Thus, ∂G(X) consists precisely of those edges that have one
end in X, and one end in the complement X of X. If G is understood, we write
simply ∂(X) instead of ∂G(X). The set ∂(X) is called a cut, the sets X and X its
shores. A cut is odd if both its shores have an odd number of vertices and is trivial
if one of its shores is a singleton.

Given a cut C := ∂(X) of G, where X is a nonempty proper subset of V , the
two graphs obtained by contracting X to a single vertex x and X to a single vertex
x are denoted, respectively, by G/X → x and G/X → x, and are called the C-
contractions of G. If the names of the vertices resulting from contractions are not
relevant, we simply denote the two C-contractions by G/X and G/X, respectively.
A graph G is the splicing of two graphs G1 and G2 if it has a cut C such that G1

and G2 are isomorphic to the two C-contractions of G and we refer to cut C as the
splicing cut of G. The following assertion may be verified easily.

Proposition 2.1
Any splicing of two matching covered graphs is also matching covered.

The graph shown in Figure 3(a) is obtained by splicing two K4’s and the graph
shown in Figure 3(b) by splicing a K3,3 and a K4. In each case, the associated
splicing cut C is indicated by a thick line. (The graph in Figure 3(a) is the triangular
prism and is usually denoted by C6.)
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(a) (b)

Figure 3: (a) C6: a splicing of two K4’s; (b) a splicing of a K3,3 and a K4

2.1 Separating cuts and tight cuts

Let G be a matching covered graph, C an odd cut of G. We say that C is separating
if both C-contractions of G are matching covered. For, example, the two cuts
shown in Figure 3 are separating cuts of the respective graphs. The following result
characterizes separating cuts and is easy to prove.

Proposition 2.2
Let G be a matching covered graph. A cut C of G is separating if and only if every
edge of G lies in a perfect matching that contains precisely one edge in C.

A cut is tight if every perfect matching of G has precisely one edge in the cut.
Every tight cut is separating, but the converse is not true. For example the cut of
C6 shown in Figure 3(a) is separating but is not tight. Every trivial cut is tight. If
G is free of nontrivial tight cuts then it is a brace if it is bipartite, a brick otherwise.

If graph G has a nontrivial tight cut C, we may decompose it into its two C-
contractions. If, in turn, one of these graphs has a nontrivial tight cut C ′, it may
be decomposed into its two C ′-contractions. By repeatedly applying this procedure,
called the tight cut decomposition procedure, we obtain a family of bricks and braces.
Lovász proved the following remarkable result [13].

Theorem 2.3
Any two applications of the tight cut decomposition procedure produce the same
family of bricks and braces, up to multiple edges.

We denote by b(G) the number of bricks obtained by a tight cut decomposition
of G. Graph G is a near-brick if b(G) = 1. Thus, every brick is a near-brick. If G
is bipartite, then for every tight cut C of G we have that both C-contractions of G
are bipartite. Thus, if G is bipartite then b(G) = 0.

2.2 Solid matching covered graphs

A matching covered graph G is solid if each of its nontrivial separating cuts is tight.
Every bipartite matching covered graph is solid. The brick C6 is not solid, whereas
brick K4 is solid.
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A number of special properties that are enjoyed by bipartite graphs are shared
by the more general class of solid matching covered graphs. For example, we showed
in [5] that bipartite matching covered graphs and solid near-bricks share the property
that their perfect matching polytopes may be defined without using the odd set
inequalities. In the same paper, we presented a proof of the following useful theorem:

Theorem 2.4 (Reed and Wakabayashi)
A brick G has a nontrivial separating cut if and only if it has two disjoint odd cycles
C1 and C2 such that G− (V (C1)) ∪ V (C2)) has a perfect matching.

A brick is odd-intercyclic if any two of its odd cycles have at least one vertex in
common. By the above theorem every odd-intercyclic brick is solid. Möbius ladders
Mn, n ≡ 0 (mod 4), are examples of such bricks. Figure 4 shows the Möbius ladder
M8 (with a Pfaffian orientation). Not every solid brick is odd-intercyclic. For
example, the brick S8 shown in Figure 6 is solid, but it is not odd-intercyclic.

Figure 4: Möbius ladder M8

No polynomial-time algorithm for recognizing solid bricks is known. It is not
even known whether this problem is in NP.

The main objective of this paper is to present a suitable generalization of Little’s
Theorem [11] concerning bipartite graphs to the class of all solid matching covered
graphs. The following result is one of the essential ingredients of that generalization.
Our proof is an adaptation of the proof given by Little and Rendl [12] of a special
case of this result where the cuts under consideration are tight cuts rather than
separating cuts.

Proposition 2.5
Let G be a matching covered graph. If G is Pfaffian then for any separating cut C :=
∂(X) of G, graph G has a Pfaffian orientation D such that the two C-contractions
of D are also Pfaffian.

Proof: Let G1 := G/X → x and G2 := G/X → x denote the two C-contractions
of G. By hypothesis, G has a Pfaffian orientation, say D0. We shall describe a
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procedure for deriving a Pfaffian orientation D of G from D0 and show that both
C-contractions of D are Pfaffian, implying that G1 and G2 are also Pfaffian.

Let V1 denote the set of vertices of V (G1)− x = X that are incident with edges
in C. Likewise, let V2 denote the set of vertices of V (G2)− x = X that are incident
with edges of C. We now define a (possibly empty) subset W of V1 ∪ V2 and show
that the orientation D of G, obtained from D0 by reversing the orientations of the
edges in ∂(W ), is a Pfaffian orientation of G such that each D-contraction of G is
also Pfaffian.

For this, let e := v1v2 denote an edge of C, where v1 is its end in X and v2 its
end in X. Then, vertex v1 lies in V1 and vertex v2 lies in V2. By hypothesis, cut
C is separating. Let M be a perfect matching of G such that M ∩ C = {e}. For
i = 1, 2, let Mi denote the restriction of M to Gi. Then, Mi is a perfect matching
of Gi that contains edge e.

Let w2 be any vertex of V2 − v2. See Figure 5. We now show that there exists
in G[X] an M -alternating path P (w2) that joins vertices v2 and w2. For this, note
that as w2 lies in V2, then it is incident with an edge in C, say f . As C is separating,
G has a perfect matching N such that N ∩C = {f}. Let Q be the M,N -alternating
cycle in G that contains edge f . Then, Q meets C in precisely the two edges e and
f . Let P (w2) denote the segment of Q in G[X] that joins v2 and w2. Clearly, P (w2)
is M -alternating. Likewise, for each vertex w1 of V1 − v1, define path P (w1) to be
an M -alternating path of G[X] that joins vertices v1 and w1. We now define W to
be the subset of (V1 − v1) ∪ (V2 − v2) consisting of those vertices w such that P (w)
is oddly oriented in D0. (Since D0 is Pfaffian, note that the set W is independent
of the choices of P (w).)

Q e

f

v1

w1

v2

w2

XX Q1 P (w2)

Figure 5: Proof of Proposition 2.5

Let D be the orientation of G obtained from the Pfaffian orientation D0 of G by
reversing the orientations on the edges of cut ∂(W ). Reversal of the orientations of
the edges of a cut preserves the parity of every cycle of even length. AsD0 is Pfaffian,
every M -alternating cycle of G is oddly oriented in D0. Thus, every M -alternating
cycle of G is oddly oriented in D. We deduce that D is a Pfaffian orientation of G.
Moreover, as neither v1 nor v2 lies in W the reversal of the orientations of the edges
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of ∂(W ) preserves the parity of path P (w) if and only if w does not lie in W . By
definition, w lies in W if and only if P (w) is oddly oriented in D0. We deduce that
P (w) is evenly oriented in D, for each vertex w in (V1 − v1) ∪ (V2 − v2).

Let D1 := D/X → x and D2 := D/X → x be the two C-contractions of D.
Then, for i = 1, 2, Di is an orientation of Gi. To prove that D1 is Pfaffian, let Q1

denote any M1-alternating cycle of G1. We now show that Q1 is oddly oriented in
D1. Firstly suppose that Q1 is an M -alternating cycle of G itself. In that case, Q1

is oddly oriented in D, whence it is also oddly oriented in D1. We may thus assume
that the edges of Q1 do not constitute a cycle in G. See Figure 5. Then, Q1 contains
edge e and also an edge f of C whose end w2 in X is distinct from v2. Let W denote
the cycle of G whose edge set is E(Q1) ∪ E(P (w2)). Then, Q is M -alternating,
whence oddly oriented in D. As P (w2) is evenly oriented in D, it follows that Q1 is
oddly oriented in D, whence oddly oriented in D1. This conclusion holds for each
M1-alternating cycle Q1 of G1. We deduce that D1 is a Pfaffian orientation of G1.
A similar reasoning may be used to prove that D2 is a Pfaffian orientation of G2. As
asserted, D is a Pfaffian orientation of G whose C-contractions are also Pfaffian. 2

It should be noted that the converse of the above proposition is not valid. (For
example, let G be the Petersen graph and let C be the cut consisting of a perfect
matching of G. The two C-contractions of G are Pfaffian. But, G itself is not
Pfaffian.) However, Little and Rendl [12] showed that the converse does hold when
C is a tight cut.

Theorem 2.6
A matching covered graph G is Pfaffian if and only if each of its bricks and braces
is Pfaffian.

This result reduces the scope of problems 1.1 and 1.2 to bricks and braces.

3 Removable Classes

Let G be a matching covered graph. An edge e of G is a removable edge if G− e is
matching covered. A pair {e, f} of edges of G is a removable doubleton if G−e−f is
matching covered but neither e nor f is removable in G. We shall use the common
name removable class to designate either a removable edge or a removable doubleton.
The following result was proved in [4] (Theorem 5.1).

Theorem 3.1
Let R be a removable class of a matching covered graph G. Then, b(G−R) ≥ b(G)
if R is a singleton, and b(G−R) = b(G)− 1 if R is a doubleton.

As a special case of the second part of the above theorem, we have the following
interesting result due to Lovász [13]:
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Theorem 3.2
For every removable doubleton {e, f} of a brick G, the graph G−{e, f} is a bipartite
matching covered graph, e joins two vertices in one part of the bipartition of G −
{e, f} and f two vertices in the other part.

In view of the above result, we see that the class of bricks with a removable
doubleton is precisely the class of near-bipartite graphs.

A removable class R of G is b-invariant if one of the following two alternatives
holds: either (i) R is a singleton and b(G − R) = b(G), or (ii) R is a doubleton.
Clearly, if G is bipartite then every removable edge of G is b-invariant. The following
more general result was established in [2, Corollary 6.5].

Theorem 3.3
Every removable edge of a solid matching covered graph is b-invariant.

3.1 Removable ears and conformal subgraphs

An ear in a matching covered graph G is a path P of odd length in G such that both
ends of P have degree at least three in G, but all the internal vertices of P have
degree two in G. For an ear P , the graph G − P is the graph obtained from G by
deleting all edges and internal vertices of P , and P is said to be removable if G−P
is matching covered. A double ear in G is a pair {P1, P2} of vertex-disjoint ears. A
double ear {P1, P2} is removable if neither P1 nor P2 is removable, but G− P1 − P2

is matching covered. The following theorem is one of the basic results of the theory
of matching covered graphs, see Lovász and Plummer[14, Chapter 5].

Theorem 3.4
Let G be a matching covered graph and let H be a matching covered subgraph of
G. Then, H is a conformal matching covered subgraph of G if and only if there
exists a sequence (G1, G2, . . . , Gr) of subgraphs of G such that G1 = G, Gr = H
and, for 2 ≤ i ≤ r, Gi is obtained from Gi−1 by deleting either a removable ear or
a removable double ear of Gi−1.

4 Minimal Non-Pfaffian Graphs

4.1 Minors

Let G be a matching covered graph, and let v be a vertex of degree two in G, with
neighbours v1 and v2. Then C := ∂(X), where X := {v, v1, v2}, is a tight cut
of G, and the C-contraction G/X is said to be obtained by bi-contracting v from G.
(Equivalently, the bi-contraction of v from G consists of contracting the two edges
incident with v.) Norine and Thomas [18] call a graph H a matching minor of a
graph G if H can be obtained from a conformal subgraph of G by bi-contractions. A
matching minor of G can be obtained from G by deletions of removable classes and
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bi-contractions. (This follows from Theorem 3.4.) We introduce here the notion
of a minor which is stronger than the notion of a matching minor. Norine and
Thomas [18] have another notion of a minor, which they do not restrict to matching
covered graphs. However, if restricted to matching covered graphs, it is equivalent
to the definition of minor given below [16]. In fact, they have discovered an infinite
family of non-Pfaffian minimal graphs.

A deletion-contraction minor of a matching covered graph G, or simply a minor
of G, is a graph that is obtainable from G, up to isomorphism, by means of deletions
of removable classes and contractions of shores of separating cuts. In other words,
H is a minor of G if there exists a sequence (G1, G2, . . . , Gr) of graphs such that,
G1 = G, Gr

∼= H and, for 1 ≤ i ≤ r − 1, the graph Gi+1 is obtained from Gi by
either deleting a removable class or by contracting a shore of a separating cut to a
single vertex. As an example, consider the sequence (G1, G2, G3, G4) of graphs in
Figure 6. The graph G1 is a nonsolid brick, the cut C is a (nontight) separating
cut of G1. The graph G2 is a C-contraction of G1, a brick (which happens to be
a solid brick, denoted in [7] by S8), and e is a removable edge in it. The cut C in
G3 := G2 − e is a separating cut (in fact, a tight cut) and G4 is obtained from G3

by contracting one of the shores of C. Thus G1, G2, G3 and G4 are minors of G1.
We allow r = 1, that is, we consider that every graph is a minor of itself.

It follows from Theorem 3.4 that every conformal subgraph of a matching covered
graph G is a minor of G. Consequently, every matching minor of G is also a minor
of G. But not every minor of G is a matching minor of G. For example, K3,3 is a
minor of G3, but it is not a matching minor of that graph.

e

C

(a) G1

e

(b) G2 (S8)

C

(c) G3

(d) G4

Figure 6: Minors

From Propositions 1.6 and 2.5, we may now deduce the following important
property of Pfaffian graphs.
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Theorem 4.1
A matching covered graph is Pfaffian if and only if all its minors are Pfaffian.

In light of the above theorem, to show that a given graph is non-Pfaffian, it
suffices to produce a minor of that graph which is known to be non-Pfaffian. For
example, since K3,3 is known to be non-Pfaffian, and since it is a minor of each of
the graphs in Figure 6, we may conclude that each of those graphs is non-Pfaffian.

Motivated by the above observation, we define a non-Pfaffian matching covered
graph to be deletion-contraction minimal, or simply minimal, if all its proper minors
are Pfaffian. It follows from Theorem 2.6 that every minimal non-Pfaffian matching
covered graph is either a brick or a brace. In addition, it is easy to see that such a
graph is also simple.

Using the notion of minimal graphs, Little’s theorem [11] may now be stated as
follows:

Theorem 4.2
The only minimal non-Pfaffian bipartite matching covered graph is the brace K3,3.

Although a minimal non-Pfaffian graph cannot contain nontrivial tight cuts, it may
contain non-trivial separating cuts. (For example, the Petersen graph has a non-
trivial separating cut, but it is a minimal non-Pfaffian brick.) In fact, we shall prove
the following surprising general theorem.

Theorem 4.3 (The Main Theorem)
Every minimal non-Pfaffian brick must have a nontrivial separating cut.

Thus, no minimal non-Pfaffian brick can be solid. By Theorem 2.4, it now follows
that every minimal non-Pfaffian brick G contains two disjoint odd cycles C1 and C2

such that G− V (C1 ∪ C2) has a perfect matching.
All bricks and braces of a solid matching covered graph are also solid. Since,

by the above theorem, there do not exist minimal non-Pfaffian solid bricks, every
minimal non-Pfaffian solid matching covered graph is a brace. Little’s Theorem 4.2
now implies the following assertion.

Corollary 4.4
The only minimal non-Pfaffian solid matching covered graph is the brace K3,3.

Let H be a matching covered graph, and let e be an edge of H. A bi-subdivision
of e consists of subdividing it by inserting an even number of vertices between
its ends. A bi-subdivision of H consists of bi-subdividing each of the edges in a
subset of E(H). Clearly, if H is matching covered, then any bi-subdivision of H
is also matching covered. A graph H is a conformal minor of a graph G if some
bi-subdivision of H is a conformal subgraph of G. Note that every conformal minor
of G is also a matching minor of G.

All previously known characterizations of classes of Pfaffian graphs have been
in terms of excluded conformal minors. It is also possible to present a similar
characterization of solid matching covered graphs. The following result may be
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deduced from our Main Theorem 4.3. (We have chosen to not include the proof of
this theorem in this paper to limit its length.)

Theorem 4.5
A solid matching covered graph is Pfaffian if and only if it does not contain K3,3

and none of the three graphs shown in Figure 7 as a conformal minor.

Figure 7: Three graphs obtained by splicing K4’s with K3,3

5 e-Triples

This section is dedicated to establishing a number of basic properties of minimal
non-Pfaffian graphs. Here we only use the fact a minimal non-Pfaffian matching
covered graph does not contain a proper conformal subgraph that is non-Pfaffian.

Lemma 5.1
Let G be a minimal non-Pfaffian matching covered graph, e a removable edge of G.
Then, G has an orientation D and two perfect matchings, M1 and M2, such that
(i) D− e is a Pfaffian orientation of G− e, (ii) edge e lies in M1 ∩M2, and (iii) M1

and M2 have distinct signs in D.

Proof: As G is minimal non-Pfaffian, it is non-Pfaffian, but G−e is Pfaffian. Extend
any Pfaffian orientation of G − e to an orientation D of G, by assigning to e an
arbitrary orientation. AsD−e is a Pfaffian orientation of G−e, all perfect matchings
of G−e have the same sign, say positive, inD. If all the perfect matchings containing
e also have positive sign in D, then D itself would be a Pfaffian orientation of G.
And, if all the perfect matchings containing e have negative sign in D, the digraph
D′ obtained from D by reversing the orientation of the edge e would be a Pfaffian
orientation of G. Both these cases are impossible because, by hypothesis, G is non-
Pfaffian. We conclude that D must have two perfect matchings M1 and M2, both
containing e, and having distinct signs. 2

The orientation D of G and the perfect matchings M1 and M2 of G constitute,
in that order, an e-triple.

In [6, Corollary 3.6] we observed the following important connection between
removable classes and Pfaffian orientations.



14 Carvalho, Lucchesi and Murty

Theorem 5.2
Let G be a matching covered graph, R be a b-invariant class of G, and

−−−−→
G−R be any

Pfaffian orientation of G−R. Then G is Pfaffian if and only if there is an extension
−→
G of

−−−−→
G−R which is a Pfaffian orientation of G.

The following corollary of the above theorem will play a pivotal role in the proof
of the Main Theorem.

Corollary 5.3
Let G be an minimal non-Pfaffian matching covered graph, e a b-invariant edge
of G, and let D an orientation of G, M1 and M2 perfect matchings of G such that
(D,M1,M2) is an e-triple. Then, every b-invariant edge of G− e lies in M1 ∪M2.

Proof: Assume, to the contrary, that G − e has a b-invariant edge f that does not
lie in M1∪M2. We first assert that f is b-invariant in G, and that e is b-invariant in
G− f . To see this, note first that edge f is removable in G− e, therefore G− e− f
is matching covered. As M1 does not contain f , it is a perfect matching of G − f .
On the other hand, e lies in M1. Thus, e is admissible in G− f . We conclude that
G− f is matching covered. As e is b-invariant in G and f is b-invariant in G− e, it
follows, by the monotonicity of function b (see Theorem 3.1), that

b(G) = b(G− e) = b(G− e− f) ≥ b(G− f) ≥ b(G),

whence equality holds throughout. As asserted, f is b-invariant in G and e is b-
invariant in G− f .

Since D − e is a Pfaffian orientation of G − e, it follows that D − e − f is a
Pfaffian orientation of G− e− f . Also, since G is minimal non-Pfaffian, the graph
G−f is Pfaffian. Thus, as e is b-invariant in G−f , it follows from Theorem 5.2 that
D − e − f has an extension to a Pfaffian orientation, say D′, of G − f . As f does
not lie in M1∪M2 (by our assumption), M1 and M2 are perfect matchings of G−f .
By hypothesis, (D,M1,M2) is an e-triple. Thus M1 and M2 have distinct signs in
D, and they would have distinct signs in D′, regardless of the direction assigned to
f . This is impossible because D′ is Pfaffian. Hence, as asserted, every b-invariant
edge of G− e lies in M1 ∪M2. 2

Lemma 5.4
Let G be a minimal non-Pfaffian brick, e a b-invariant edge of G, and let D an
orientation of G, M1 and M2 perfect matchings of G such that (D,M1,M2) is an
e-triple. Then, every removable doubleton of G− e is a subset of M1 ∪M2.

Proof: Assume, to the contrary, that G−e has a removable doubleton R := {f1, f2}
that is not a subset of M1∪M2. Adjust notation so that f2 does not lie in M1∪M2.
By hypothesis, G is a brick, e is a b-invariant edge of G and R is a removable
doubleton of G− e. Thus,

b(G− e) = b(G) = 1 and b(G− e−R) = 0.
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We deduce that G − e − R is bipartite. Let {A1, A2} denote the bipartition of
G− e−R. Then, one of f1 and f2 has both ends in A1, the other has both ends in
A2. Adjust notation so that fi has both ends in Ai, for i = 1, 2.

Let n = |M1| = |M2|. For i = 1, 2, let mi denote the number of edges of Mi − e
that join a vertex of A1 to a vertex of A2. Clearly, mi < n. Let xi denote the
number of ends of e in Ai. Edge f2 is the only edge of G − e having both ends in
A2. Moreover, f2 does not lie in M1 ∪M2, by hypothesis. Thus, m1 = m2 = n−x2.
Consequently, x2 ≥ 1. That is, edge e has at least one end in A2.

Consider first the case in which edge e has both ends in A2. Then, mi = n−2. In
that case, f1 lies in M1∩M2. The graph G−e−R, that is, G−e−f1−f2, is matching
covered and bipartite. The set Mi is a perfect matching of G − f2. Thus, f2 is
removable in G. Moreover, neither e nor f1 is removable in G−f2. Thus, S := {e, f1}
is a removable doubleton of G−f2. We deduce that b(G−f2)−1 = b(G−f2−S) = 0,
whence f2 is b-invariant in G. This is a contradiction to Corollary 5.3, as f2 does
not lie in M1 ∪M2.

Consider next the case in which edge e has one end in A1, the other end in A2.
Then, mi = n − 1. Consequently, f1 does not lie in Mi. Edge e is thus admissible
in G−R. Moreover, G− R is bipartite. We deduce that e is b-invariant in G− R.
By the definition of an e-triple, D − e is a Pfaffian orientation of G − e. It follows
that D− e−R is a Pfaffian orientation of G− e−R. As G is minimal non-Pfaffian,
the graph G − R is Pfaffian. Thus, as e is b-invariant in G − R, by Theorem 5.2,
D− e−R has an extension to a Pfaffian orientation, say D′, of G−R. But, as R is
disjoint from M1 ∪M2, it follows that M1 and M2 are perfect matchings of G−R.
By hypothesis, (D,M1,M2) is an e-triple. Thus M1 and M2 have distinct signs in
D, and they would have distinct signs in D′, regardless of the directions assigned to
f1 and f2. This is impossible because D′ is Pfaffian.

In both alternatives considered, we derived a contradiction. As asserted, R is a
subset of M1 ∪M2. 2

6 Admissible and Removable Edges

It should be clear from the foregoing discussion that one possible way of showing
that a non-Pfaffian matching covered graph is not minimal is by showing that it
has removable classes satisfying suitable properties. By using results concerning
non-removable edges in bipartite graphs, we were able to present a simple proof
of Theorem 4.2 in [6]. The proof of the Main Theorem 4.3 requires a deeper un-
derstanding of non-removable edges in matching covered graphs, especially in solid
bricks. We develop these results in this section.

6.1 The three case lemma

Let G be a matching covered graph, let e be a removable edge of G. Let C := ∂(X)
be a cut of G. We say that C is peripheral if C is nontrivial, cut C − e is tight in
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G − e and a (C − e)-contraction is bipartite. Assume that C is peripheral, where
J := (G − e)/X → x has bipartition {B, I}, with x in I. We then refer to I − x
as the inner part of J , whereas B is the outer part of J . The following property is
easily proved:

Lemma 6.1
Let G be a matching covered graph free of nontrivial tight cuts, let e be a b-invariant
edge of G, C := ∂(X) a nontrivial cut of G such that C − e is tight in G− e. Then,
C is peripheral and precisely one of (C − e)-contractions of G − e is bipartite. Let
J := (G− e)/X → x be bipartite. Then, either both ends of e lie in the inner part
of J or one end of e lies in the inner part of J , the other end lies in X. 2

Lemma 6.2 (The Three Case Lemma)
Let G be a brick, e a b-invariant edge of G such that G − e is not a brick. Let H
be the brick of G− e, obtained by a tight cut decomposition of G− e. Then, one of
the following three alternatives holds (see Figure 8):

(i) either G has a peripheral cut C1 := ∂(X1) such that J1 := (G − e)/X1 → x1
is bipartite, H = (G − e)/X1 → x1 and edge e has one end in the inner part
of J1, the other end in V (H)− x1,

(ii) or G has two peripheral cuts Ci := ∂(Xi), for i = 1, 2, such that X1 and X2 are
disjoint, Ji := (G−e)/Xi → xi is bipartite, H = ((G−e)/X1 → x1)/X2 → x2
and edge e has one end in the inner part of J1, the other end in the inner part
of J2,

(iii) or G has a peripheral cut C1 := ∂(X1) such that J1 := (G − e)/X1 → x1 is
bipartite, H = (G − e)/X1 → x1 and edge e has both ends in the inner part
of J1.

Proof: Assume that G − e is not a brick. Let C1 := ∂(X1) be a nontrivial cut of
G such that C1 − e is tight and one of the contraction vertices of H is x1, obtained
by contracting X1 to x1. As e is b-invariant, J1 is bipartite. Moreover, either e has
both ends in the inner part of J1, or e has one end in the inner part of J1, the other
end in X1. In the former case, we have the last of the three asserted cases. Assume
thus that e has one end in the inner part of J1, the other end in X. If x1 is the
only contraction vertex of H then the first of the three cases holds. We may thus
assume that H has more than one contraction vertex. Let x2 be another contraction
vertex of H, distinct from x1. Let J2 := (G − e)/X2 → x2. Then, J2 is bipartite.
Moreover, edge e has one end in the inner part of J2. This conclusion holds for each
contraction vertex x2 of H distinct from x1. We deduce that H has precisely two
contraction vertices. Moreover, the second of the three cases holds. 2

Let G be a brick, e a b-invariant edge of G. If G− e is also a brick then we say that
e has index zero. If G− e is not a brick, then we way that e has index one, two or
three, depending on which of the three cases stated in Lemma 6.2 holds. If H has
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I1
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e

H − x1
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I2

B2

e

H − x1 − x2

I1

B1

e

H − x1

Figure 8: The three cases of Lemma 6.2

one contraction vertex and one of the ends of e lies in V (H) then e has index one.
If H has two contraction vertices then e has index two. Finally, if the last of the
three cases holds then e has index three.

6.2 Thin edges

Recall that the bi-contraction of a vertex of degree two in a graph consists of con-
tracting both the edges incident with that vertex. If G is a brick, and e is an edge
of G, then G− e has at most two vertices of degree two. The retract of G− e is the
graph obtained from it by bi-contracting all its vertices of degree two. An edge e
of a brick G is thin if the retract of G− e is a brick. (Thus thin edges of bricks are
special types of b-invariant edges.) We remark that the index of a thin edge e of a
brick G is
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• zero, if both ends of e have degree four or more in G;

• one, if exactly one end of e has degree three in G;

• two, if both ends of e have degree three in G and edge e does not lie in a
triangle;

• three, if both ends of e have degree three in G and edge e lies in a triangle.

Examples of thin edges of indices one, two, and three are indicated by solid lines
in the three bricks, respectively, shown in Figure 9.

Figure 9: Thin edges of indices one two and three

In [7], we proved the existence of thin edges for bricks. (See also Norine and
Thomas [18].)

Theorem 6.3 (The thin edge theorem for bricks)
Every brick distinct from K4, C6 and the Petersen graph has a thin edge. 2

6.3 Removable edges in bipartite graphs

The following result provides a characterization of non-removable edges in bipartite
matching covered graphs.

Proposition 6.4 (see [14])
Let G be a bipartite matching covered graph with bipartition (A,B), and let e be an
edge of G. Then, e is not removable in G if and only if there is a partition (A′, A′′)
of A and a partition (B′, B′′) of B with |A′| = |B′| such that e is the only edge
joining a vertex in A′ to a vertex in B′′.

We shall now establish a general result concerning bricks and peripheral cuts
which provides an essential tool in achieving our objective.

Lemma 6.5
Let G be a matching covered graph free of nontrivial tight cuts, e a removable
edge of G, C := ∂(X) a peripheral cut of G such that the (C − e)-contraction
J := (G − e)/X → x is bipartite. The following properties hold: (i) every edge of
C − e is removable in J and (ii) for any inner vertex v of J having degree three or
more, at most one edge of J in ∂(v) is not removable.
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Proof: Let B and I denote the outer and inner parts of J , respectively. By
Lemma 6.1, edge e has one end in I, and no end in B.

Let f be a non-removable edge of J . Let v be the end of f in I, w its end in B.
Let u be the end of f in G distinct from w. Thus, either (i) u lies in X and v = x
or (ii) u = v and v lies in I. By Proposition 6.4, there exists a partition (B′, B′′)
of B and a partition (I ′, I ′′) of I + x such that |I ′| = |B′| and f is the only edge
of J that joins a vertex of I ′ to a vertex of B′′ (see Figure 10). If the contraction

I I ′ I ′′

B B′ B′′

Y

v

w

f

Figure 10: An illustration for the proof of Lemma 6.5

vertex x does not lie in I ′′ then the set I ′′ ∪ {u} is a nontrivial barrier of G, and
the cut ∂(I ′′ ∪ B′′ ∪ {u}) a nontrivial tight cut of G, a contradiction. We deduce
that the contraction vertex x lies in I ′′. Edge f has no end in I ′′. In particular, f
is not incident with x. That is, f does not lie in C − e. This conclusion holds for
each non-removable edge f of J . Thus, every edge of C − e is removable in J . This
concludes the first part of the proof.

To prove the second part, assume that v lies in I and that the degree of v in
J is at least three. Observe that B′ is a (possibly trivial) barrier of G − e. Let
Y := B′ ∪ (I ′ − v), let D := ∂(Y ). Then, D − e is a tight cut of G− e. If I ′ = {v}
then all the edges of J−f incident with v are multiple edges of J , because the degree
of v in J is three or more: in that case, all the edges of ∂J(v)− f are removable in
J . We may thus assume that I ′ 6= {v}. Then, D is nontrivial. By the first part,
every edge of D − e is removable in the (D − e)-contraction K := (G − e)/Y → y
of G − e. In particular, every edge of ∂K(v) − f is removable in K. Note that
K is a D − e-contraction of J . The edges of ∂(v) − f are multiple edges in the
(D − e)-contraction (J)/Y → y of J , because the degree of v is three or more in J .
Thus, every edge of ∂J(v) − f is removable in both (D − e)-contractions of J . As
asserted, at most one edge of J incident with v is not removable in J . 2
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Corollary 6.6
Let G be a graph free of nontrivial tight cuts, e a removable edge of G, C := ∂(X)

a peripheral cut of G, let J := (G− e)/X → x be a bipartite (C − e)-contraction of
G− e. Then, every removable class of (G− e)/X → x is also removable in G− e. 2

6.4 Barriers and non-removable edges

There is a close connection between removable edges in a matching covered graph
and its barriers. In this section we examine this relationship and establish a number
of basic results.

Let G be a (not necessarily matching covered) graph. We say that G is even
if |V (G)| is even and odd if |V (G)| is odd. We denote by O(G) the set of odd
components of G. Using this notation, Tutte’s fundamental theorem may be stated
as follows:

Theorem 6.7 (Tutte’s Perfect Matching Theorem [20])
A graph G has a perfect matching if and only if |O(G − S)| ≤ |S|, for each subset
S of V (G).

A nonempty set B of vertices of a graph G is a barrier of G if |O(G−B)| = |B|.
If G is matching covered then, for every v ∈ V , the set {v} is a barrier. Such barriers
are trivial.

Recall that a graph G is critical (or, factor-critical) if, for any vertex v of G, the
subgraph G− v has a perfect matching. The following corollary of Tutte’s theorem
may be derived using standard techniques of matching theory.

Corollary 6.8
Let G be a graph which has a perfect matching. Then the following properties hold:

(i) An edge e of G is admissible if, and only if, there is no barrier which contains
both ends of e.

(ii) For each maximal barrier B of G, all components of G−B are critical.

A graph G is bicritical if, for any two distinct vertices v and w of G, subgraph
G− v−w has a perfect matching. By Tutte’s Perfect Matching Theorem, it is easy
to see that a graph with an even number of vertices is bicritical if and only if it has
only trivial barriers. Edmonds, Lovász and Pulleyblank [8] proved that a matching
covered graph on four or more vertices is a brick if and only if it is 3-connected and
bicritical.

If an edge e of a matching covered graph G is not removable, by definition, there
must be inadmissible edges in G− e. Thus, by Corollary 6.8, G− e must necessarily
contain a barrier which includes both ends of some edge. This observation is the
basis of all the known criteria for deciding whether or not a given edge of a matching
covered graph is admissible.
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As we shall see, the above proposition plays a very useful role in deriving re-
sults concerning removable edges in matching covered graphs. A similar result for
non-bipartite matching covered graphs would be desirable, but none is known. How-
ever, we have been able to find a useful theorem concerning non-removable edges in
bicritical graphs. Its proof requires the following classical result:

Theorem 6.9 (Dulmage-Mendelson Decomposition Theorem [14])
Let G be a graph with a perfect matching and bipartition (A,B). Then, there exists
a partition (A1, A2, . . . , Ar) of A and a partition (B1, B2, . . . , Br) of B, where r ≥ 1
and such that for i = 1, . . . , r, (i) the subgraph Gi of G induced by Ai ∪ Bi has
bipartition (Ai, Bi) and is matching covered and (ii) every edge of G incident with
some vertex of Ai is also incident with some vertex of Bj , where j ≤ i.

We now present that structural theorem concerning non-removable edges in bi-
critical graphs to which we alluded to earlier. For a barrier B of a graph G, the
bipartite graph H(B) associated with B is obtained by deleting all edges with both
ends in B, deleting all vertices in the even components ofG−B, and then contracting
each odd component of G−B to a single vertex.

Theorem 6.10
Let G be a bicritical graph, and let e be a non-removable edge of G. Then, G − e
contains a barrier B that satisfies the following properties:

(i) Bipartite graph H(B) associated with barrier B is matching covered.

(ii) Edge e has its ends in distinct odd components of G− e−B.

(iii) For each odd component K of G−e−B, cut C(K) := ∂G(V (K)) is separating
in G.

Proof: As e is non-removable, graph G − e is not matching covered. By Corol-
lary 6.8, G− e has a barrier that contains both ends of some edge f . Let B⋆ denote
a maximal barrier of G − e that contains both ends of f . By the maximality of
B⋆, it follows from part (ii) of Corollary 6.8 that G − e − B⋆ contains only odd
components. Moreover, each component of G− e−B⋆ is critical.

As f is admissible in G, it follows that e has its ends in distinct (odd) components
of G− e−B⋆. Consider now the bipartite graph H(B⋆) associated with B⋆. Let M
be any perfect matching of G that does not contain edge e. Then, for each (odd)
component K of G − e − B⋆, M contains precisely one edge in cut ∂G(V (K)). It
follows that the restriction of M to H(B⋆) is a perfect matching of H(B⋆). Let
A⋆ denote the part of the bipartition of H(B⋆) distinct from B⋆. By the Dulmage-
Mendelsohn Decomposition Theorem, there exists a partition (A1, A2, . . . , Ar) of A

⋆

and a partition (B1, B2, . . . , Br) of B
⋆, where r ≥ 1 and such that for i = 1, 2, . . . , r,

(i) the subgraph Hi of H(B⋆) induced by Ai ∪ Bi has bipartition (Ai, Bi) and is
matching covered and (ii) every edge of H(B⋆) incident with some vertex of Ai is
also incident with some vertex of Bj , where j ≤ i. See Figure 11.
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Figure 11: The graph L in the proof of Theorem 6.10

Let B := B1. Then, B is a barrier of G − e. Moreover, H(B) is equal to H1,
whence H(B) is matching covered. This proves part (i).

If edge e has at least one end, say v, in some even component of G− e−B, then
B + v would be a nontrivial barrier of G, a contradiction to the hypothesis that G
is bicritical. Thus, e has both ends in odd components of G − e − B. Every odd
component of G − e − B is a component of G − e − B⋆. Moreover, edge e has its
ends in distinct components of G− e−B⋆. Thus, edge e has its ends in distinct odd
components of G− e−B. This proves part (ii).

Every odd component of G − e − B is critical because it is also a component
of G − e − B⋆. Thus, for each odd component K of G − e − B, graph G(K) :=
G/V (K) → vK is matching covered, in fact, bicritical. (The vertex set of G(K)
is V (K) + vK . Since K is critical, vK is not contained in any nontrivial barrier of
G(K). Furthermore, any subset of V (K) that is a barrier of G(K) would also be a
barrier of G. Since G is bicritical, it follows that G(K) is bicritical.)

Now let L be the graph obtained from G by contracting the vertex set of each
odd component of G− e−B to a single vertex. In order to prove that cut C(K) is
separating in G, for each odd component K of G − e − B, it suffices to show that
graph L is matching covered.

For i, 1 ≤ i ≤ r, let Li denote the subgraph of L induced by Bi ∪ Ai. We first
note that if g is an edge of L that is not an edge of any Li, any perfect matching M
of G containing g must contain an edge with both ends in B⋆. This is clearly true if
g = e or g itself has both ends in B⋆. If not, g has one end in some Bj and one end
in some Ai, where j < i. If a perfect matching M containing g contains no edges
of G with both ends in B⋆, then it must match each vertex of B⋆ with precisely
one odd component of G − B⋆. This is not possible because all neighbours of the
vertices in Bi ∪Bi+1 ∪ · · · ∪Br are in Ai ∪Ai+1 ∪ · · · ∪ Ar, and the edge g has one
end in Bj , (j < i), and one end in Ai.

We now proceed to show that every edge of L is admissible. By the definition
of Bi and Ai, each Li is matching covered. Furthermore, if for i, 1 ≤ i ≤ r, Mi is
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any perfect matching of Li, then M1 ∪M2 ∪ · · · ∪Mr is a perfect matching of L. It
follows that every edge of L that is an edge of some subgraph Li is admissible in L.
Thus, let g be an edge of L that is not an edge of any Li. By the above observation,
there is a perfect matching M of G containing g and some edge h of G which has
both its ends in B⋆. A simple counting argument shows that M must contain e and,
for each odd component K of G−B⋆, exactly one edge in ∂(V (K)). The restriction
N of M to E(L) is then a perfect matching of L. This establishes the validity of
part (iii). 2

We conclude this subsection with a simple lemma which will be used in the proof
of Theorem 6.13 concerning non-removable edges in solid bricks.

Lemma 6.11
Let G be a brick, and let e1 and e2 be two adjacent non-removable edges of G.
Suppose that, for i = 1, 2, B′

i is a barrier of G− ei. Then |B′
1 ∩B′

2| ≤ 1.

Proof: Assume, to the contrary, that B′
1 and B′

2 have two vertices, say x and y, in
common. As G is a brick G− x− y has a perfect matching, say M . However, as B′

i

is a barrier of G− ei, for i = 1, 2, it follows that both e1 and e2 belong to M . This
is impossible because e1 and e2 are adjacent edges. 2

6.5 Removable edges in solid bricks

We shall now use Theorem 6.10 to derive useful results concerning removable edges
in solid bricks. We begin with a simple consequence of that theorem.

Corollary 6.12
Let G be a solid brick, e a non-removable edge of G. Then, G− e contains a barrier
B such that every odd component of G− e−B is trivial and edge e has its ends in
distinct odd components of G − e − B. Moreover, the graph H(B) obtained from
G − e by removing the vertices in even components of G − e − B and the edges
having both ends in B is matching covered.

Proof: Let B denote a barrier that satisfies the statement of Theorem 6.10. Edge e
has its ends in distinct odd components of G− e−B. Thus, B is nontrivial. Let K
be any odd component of G − e − B. Then, C(K) := ∂(V (K)) is separating in G.
By hypothesis, G is solid. Therefore, C(K) is tight. By hypothesis, G is a brick.
Therefore, C(K) is trivial. As B is nontrivial, the set V (K) contains three or more
vertices. We deduce that V (K) is a singleton. This conclusion holds for each odd
component K of G− e− B. The assertion now follows, by the properties of H(B)
in the statement of Theorem 6.10. 2

Theorem 6.13
Let G be a solid brick, v a vertex of G, n the number of neighbours of v, d the
degree of v. Enumerate the d edges of ∂(v) as ei := vvi, for i = 1, 2, . . . , d. Assume
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that neither e1 nor e2 is removable in G. Then, n = 3 and, for i = 1, 2, there exists
an equipartition (Bi, Ii) of V (G) such that

(i) ei is the only edge of G that has both ends in Ii,

(ii) every edge that has both ends in Bi is incident with v3, and

(iii) the bipartite subgraph Hi of G, obtained by the removal of ei and each edge
having both ends in Bi, is matching covered.

Moreover, B1 = (I2 − v) ∪ {v3} and B2 = (I1 − v) ∪ {v3}. (See Figure 12 for an
illustration.)

B2B1

I1 I2

e1 e2

v

vv

v1

v1

v1 v2

v2

v2

v3 v3

v3

u

u

w

w
u w

Figure 12: Graphs G, G− e1 and G− e2

Proof: By hypothesis, neither e1 nor e2 is removable in G. By Corollary 6.12, for
i = 1, 2, graph G−ei has a barrier Bi such that (i) each odd component of G−ei−Bi

is trivial, (ii) edge ei has its ends in distinct odd components of G − ei − Bi, and
(iii) the bipartite graph Hi associated with Bi is matching covered.

Let us now prove that n = 3 and B1 ∩ B2 = {v3}. As ei has both ends in odd
components of G− ei −Bi, and since each such odd component is trivial, it follows
that v is the vertex of a trivial component of G − ei − Bi. No edge of ∂(v) − ei
has both ends in distinct odd components of G − ei − Bi, because Bi is a barrier
of G − ei. It follows that {v3, v4, . . . , vd} is a subset of B1 ∩ B2. By Lemma 6.11,
B1 ∩B2 is either empty or a singleton. We deduce that n = 3 and B1 ∩B2 = {v3}.
Consequently, if d > 3 then edges e3, . . . , ed are multiple edges.

For i = 1, 2, if x is a vertex in an even component of G − ei − Bi, Bi + x is a
barrier of G− ei. Using this fact, we now proceed to show that G− ei −Bi has no
even components.

Suppose that G− e1 − B1 has even components and that xy is an edge of such
a component. If x is in an even component of G− e2 −B2, then B1 + x and B2 + x
are barriers of G − e1 and G − e2, respectively, and (B1 + x) ∩ (B2 + x) ⊇ {v3, x}.
Similarly, if x is in B2, B1 + x and B2 are barriers of G − e1 and G − e2 and
(B1 + x) ∩B2 ⊇ {v3, x}. In either case, we have a contradiction by Lemma 6.11. It
follows that x and, similarly, y are isolated vertices of G− e2 − B2. This is absurd
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because xy is an edge of G − e2 − B2 different from e1. Hence G − e1 − B1 and,
similarly, G− e2 −B2 have no even components.

For i = 1, 2, now let Ii := V (G) − Bi. Then, Ii is the set of isolated vertices of
G − ei − Bi and edge ei is the only edge of G that has both ends in Ii. Moreover,
Hi is matching covered. As B1 ∩ B2 = {v3}, and since v lies in I1 ∩ I2, it follows
that B1 = (I2 − v) ∪ {v3} and B2 = (I1 − v) ∪ {v3}. As e1 is the only edge of G
having both ends in I1, it follows that every edge having both ends in B2 is incident
with v3. Likewise, every edge having both ends in B1 is incident with v3. 2

Corollary 6.14
If G is a solid brick with six vertices or more then for every vertex v of G at most
two edges incident with v are non-removable in G.

Proof: Let v be a vertex of G, adopt the notation of the statement of Theorem 6.13.
Assume that for i = 1, 2, 3, edge ei is not removable in G. Then, for i = 1, 2, 3,
V (G) has an equipartition (Bi, Ii) such that B1 ∩ B2 = {v3}, B1 = (I3 − v) ∪ {v2}
and B2 = (I3 − v) ∪ {v1}. Then, I3 − v = B1 ∩ B2 = {v3}, whence I3 = {v, v3}. In
that case, as I3 contains half the vertices of G, it follows that G contains precisely
four vertices. 2

Corollary 6.15
If G is a solid brick of maximum degree three or four, then, for every vertex v of G
at most one edge incident with v does not lie in a removable class of G.

Proof: Adopt the notation in the statement of Theorem 6.13, assume that neither
e1 nor e2 lies in a removable class of G. Then, neither e1 nor e2 is removable in G.
By the same theorem, v has precisely three neighbours. Let B1 and B2 be as in the
statement of Theorem 6.13. For i = 1, 2, let ni denote the number of edges of G
that have both ends in Bi. As |Bi| = |Ii| and since ei has both ends in Ii, it follows
that ni > 0, otherwise ei would not be admissible in G. As I1 − v and I2 − v are
stable sets, it follows that all edges with both ends in B1, and all edges with both
ends in B2, are incident with v3. By hypothesis, the degree of v3 is three or four. As
v3 is adjacent to v which is a vertex of I1 ∩ I2, it follows that n1 + n2 ≤ 3, whence
at least one of n1 and n2 is equal to one. Adjust notation so that n1 = 1. Let f1
denote the only edge of G having both ends in B1. Then, H1 = G−e1−f1. Neither
e1 is admissible in G − f1 nor f1 is admissible in G − e1. We deduce that {e1, f1}
is a removable doubleton of G. This contradicts the assumption that neither e1 nor
e2 lies in a removable class of G. 2

7 Proof of the Main Theorem

The Main Theorem 4.3 is clearly equivalent to the statement that there do not exist
minimal non-Pfaffian solid bricks. We shall demonstrate this by assuming such a
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solid brick exists, analyzing the properties of that hypothetical brick, and arriving
at a contradiction.

The following result is an immediate consequence of one our earlier results [2,
Theorem 2.28]

Lemma 7.1
If G is a solid matching covered graph and e is a removable edge of G then G− e is
also solid.

Combining this result with Theorem 3.3, we deduce that if G is a solid matching
covered graph and e is a removable edge of G then e is b-invariant and G−e is solid.
We shall use this property several times in our analysis in this section.

In the rest of this section, G denotes a (hypothetical) minimal non-Pfaffian solid
brick.

Lemma 7.2
Brick G is simple and has eight or more vertices. Moreover, it has a thin edge.

Proof: By minimality, G is simple. Graph K4 is the only simple brick on four
vertices. In [7, Theorem 44], we proved that W5, the wheel on six vertices, is the
only simple solid brick on six vertices. But K4 and W5, being planar, are Pfaffian.
It follows that G has eight or more vertices. Graph C6 and the Petersen graph are
not solid. Thus, by Theorem 6.3, G has a thin edge. 2

Lemma 7.3
For every removable edge e of G, the brick H of G− e is solid.

Proof: The set of perfect matchings of H is the restriction to E(H) of the set of
perfect matchings of G− e. Thus, by Proposition 2.2, every separating cut of H is
a separating cut of G− e. Moreover, every nontrivial cut of H is a nontrivial cut of
G− e. As G− e is solid, every nontrivial separating cut is tight. As H, a brick, is
free of nontrivial tight cuts, it follows that H is free of nontrivial separating cuts.
Thus H is a solid brick. 2

Lemma 7.4
Brick G is cubic.

Proof: Assume, to the contrary, that G has a vertex v of degree four or more.
By Corollary 6.14, at least two edges incident with v are removable. Let e be a
removable edge of G incident with v. As G is solid, e is b-invariant in G. As G is
minimal, let (D,M1,M2) be an e-triple. We derive now a contradiction by proving
that ∂(v) − e has an edge f that lies in a removable class R of G − e disjoint with
M1 ∪ M2. If R = {f} then, as G − e is solid, it follows that f is b-invariant in
G− e; moreover, f does not lie in M1 ∪M2: this is a contradiction to Corollary 5.3.
Alternatively, if R is a removable doubleton, then, as it is disjoint with M1 ∪M2 we
arrive at a contradiction to Lemma 5.4
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Consider first the case in which G has a peripheral cut C := ∂(X) such that
J := (G − e)/X → x is bipartite and v lies in the inner part of J . By Lemma 6.5,
at most one edge of J incident with v is not removable in J . Thus, at most one
edge of ∂(v) − e is not removable in G − e. Let f be any of the edges of ∂(v) − e
that is removable in G− e. Then, f is a removable edge of G− e that does not lie
in M1 ∪M2.

Consider next the case in which v is a vertex of the brick of G − e. If G − e
has six or more vertices then, by Corollary 6.14, ∂(v) − e contains an edge f that
is removable in G − e. We may thus assume that H has precisely four vertices. In
that case, G− e is not a brick, because G has eight or more vertices. As v, an end
of e, lies in H, it follows that e has index one. Let C := ∂(X) denote the peripheral
cut of G such that H = (G− e)/X → x. Thus, x and v are two of the four vertices
of H. Let u and w denote the other two vertices. Clearly, |C ∩Mi| = 3, for i = 1, 2.
Thus, each of u, v and w is incident with an edge of Mi. It follows that edge uw
does not lie in M1 ∪M2. If v is joined to x by two or more edges then ∂(v)− e has
an edge f removable in H. If v and x are joined by precisely one edge then that
edge and uw constitute a removable doubleton of H. In both alternatives, H has a
removable class R disjoint with M1∪M2. By Corollary 6.6, R is removable in G−e.
In all alternatives considered, we derived a contradiction. 2

Let e := v′v′′ be a thin edge of G. By Lemma 7.1, matching covered graph G−e
is solid. Also, by Theorem 3.3, G − e is a near-brick. Let H denote the brick of
G− e. As G is cubic, edge e has index two or three.

Lemma 7.5
Brick G is free of triangles and edge e has index two.

Proof: Assume, to the contrary, that G has a triangle, T . Let C := ∂(T ), G′ :=
G/V (T ) be the C-contraction of G obtained by contracting T to a single vertex.
As G is a brick, G′ is 3-edge-connected. As G is cubic, G′ is also cubic. By Tutte’s
Perfect Matching Theorem, G′ is matching covered. The other C-contraction of G
is K4, also a matching covered graph. Thus, C is a separating cut of G. As G
has eight or more vertices, it follows that C is nontrivial. This is a contradiction,
because G is solid and free of nontrivial tight cuts, As asserted, G is free of triangles.

We have seen that the index of e is two or three. But it cannot be three, otherwise
G would have a triangle. As asserted, the index of e is equal to two. 2

Lemma 7.6
M1 ∩M2 = {e}.

Proof: We know that e lies in M1 ∩M2. Assume, to the contrary, that M1 ∩M2 − e
contains an edge, f . Consider first the case in which f joins contraction vertices
x1 and x2. In G, edge f joins a vertex x′ adjacent to v′ to a vertex x′′ adjacent to
v′′. Then, {v′, x′, x′′, v′′} is the vertex set of a quadrilateral Q that contains edges
e and f and is Mi-alternating, for i = 1, 2. In that case, let M ′

i := Mi△E(Q).



28 Carvalho, Lucchesi and Murty

Each M ′
1M

′
2-alternating cycle is also an M1M2-alternating cycle, and vice versa.

Thus, the signs of M ′
1 and M ′

2 in D are distinct. Moreover, M ′
1 and M ′

2 are perfect
matchings of G− e. This is impossible because D − e is Pfaffian (by the definition
of D).

We may thus assume that edge f is incident with a vertex v in V (H)− x1 − x2.
The maximum degree of vertices of H is four. By Corollary 6.15, at most one edge
incident with v does not lie in a removable class of H. Thus, H has an edge, g, that
is incident with v, does not lie in M1 ∪M2 and lies in a removable class R of H. By
Corollary 6.6, R is a removable class of G − e. Moreover, R contains an edge that
does not lie in M1 ∪M2. This is a contradiction to Corollary 5.3 or Lemma 5.4. 2

Lemma 7.7
Set M1△M2 spans a Hamiltonian cycle Q of graph G− v′ − v′′.

Proof: Let H denote the graph G[M1△M2]. As M1 and M2 have distinct signs in G,
it follows that the number of cycles of H that have even parity in D is odd. Let Q be
a cycle of H that has even parity in D. Let M ′

2 := M1△E(Q). Then, (D,M1,M
′
2) is

an e-triple of G. Every edge of M ′
2 −E(Q) lies in M1. By Lemma 7.6, e is the only

edge of M1 ∩M ′
2. Thus, M

′
2 −E(Q) = {e}. Consequently, V (Q) = V (G)− v′ − v′′.

That is, Q is a Hamiltonian cycle of G− v′ − v′′, as asserted. 2

Let (U,W ) be the bipartition of cycle Q. Let Z denote the set of vertices of V (Q)
that are adjacent to vertices in {v′, v′′}. As G is cubic and free of multiple edges,
Z contains precisely four vertices. Each vertex of V (Q) − Z is the end of precisely
one chord of Q.

Lemma 7.8
No chord of Q has one end in U , the other in W .

Proof: Assume, to the contrary, that Q has a chord f that has one end in U the
other end in W . (See Figure 13a.) Then, Q+ f has two cycles, Q1 and Q2. One of
Q1 and Q2 is M1-alternating, the other M2-alternating. Adjust notation so that Qi

is Mi-alternating, for i = 1, 2. As Q has even parity in D, then precisely one of Q1

and Q2 has odd parity in D. Adjust notation so that Q1 has odd parity in D. Let
M ′

1 := M1△E(Q1). Then, (D,M ′
1,M2) is an e-triple. The edges in E(Q1) ∩M2 lie

also in M ′
1. Thus, M

′
1 ∩M2 − e is nonempty, a contradiction to Lemma 7.6. 2

Lemma 7.9
Cycle Q does not have a chord having both ends in U and another chord having
both ends in W .

Proof: Assume the contrary. Let f := u1u2 be a chord of Q having both ends in
U , let g := w1w2 be a chord of Q having both ends in W . Consider first the case
in which f and g do not cross (Figure 13(b)). In that case, f and g determine two
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Figure 13: Proof of the Main Theorem – Chords of Q

disjoint odd cycles C1 and C2 in Q such that the complement of C1 ∪ C2 in G has
a perfect matching. By Theorem 2.4, G is nonsolid. This is a contradiction.

We may thus assume that f and g cross. Then, u1, w1, u2, w2 occur in Q in that
cyclic order. (See Figure 13(c).) Let S := {u1, w1, u2, w2}. For any two cyclically
consecutive distinct vertices x and y in S, let Q[x, y] denote the path in Q from x
to y internally disjoint with S. Let

Q1 := Q[w2, u1] · (u1, f, u2) · Q[u2, w1] · (w1, g, w2)

Q2 := Q[u1, w1] · (w1, g, w2) · Q[w2, u2] · (u2, f, u1).

One of Q1 and Q2 is M1-alternating, the other is M2-alternating. Adjust notation so
that Qi is Mi-alternating, for i = 1, 2. For any path P in G, let fw(P ) denote the set
of forward edges of P in D. Taking into account that for any path P of odd length,
if R denotes the reverse of P then |fw(P )| + |fw(R)| ≡ 1 (mod 2), and recalling
that Q has even parity in D, we deduce that |fw(Q1)| + |fw(Q2)| ≡ 1 (mod 2).
Consequently, precisely one of Q1 and Q2 has odd parity in D. Adjust notation
so that Q1 has odd parity in D. Let M ′

1 := M1△E(Q1). Then, (D,M ′
1,M2) is an

e-triple. The edges of E(Q1) ∩ M2 lie in M ′
1. Thus, M ′

1 ∩ M2 − e is nonempty, in
contradiction to Lemma 7.6. 2

We now derive the final contradiction, arriving to the conclusion that G is a non-
solid brick. We know that G has eight or more vertices. Therefore, Q has at least
one chord, say f := u1u2. By Lemma 7.8, u1 and u2 are both in U or in W . Adjust
notation so that u1 and u2 are both in U . There are two odd paths, P1 and P2,
in Q, with ends in u1 and u2. By Lemma 7.5, G has no triangles. It follows that
|V (P1)| ≥ 5. Similarly, |V (P2)| ≥ 5. Thus, P1 and P2 have each one at least two
internal vertices in W . (See Figure 14(a).) By Lemmas 7.8 and 7.9, every chord
of Q has both ends in U . Therefore, the vertices of W are all adjacent to vertices
in {v′, v′′}. Consequently, |W | = 4. Therefore, Q has eight vertices and G has ten
vertices. The internal vertices of P1 and P2 in U must thus be the ends of another
chord of Q.
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Figure 14: Graph G

The ends of e may lie in a quadrilateral in G− e or not. There are precisely two
graphs, up to isomorphism, correspondent to each one of these cases (Figure 14(b)
and (c)). In any case, G has ten vertices and two disjoint pentagons. By Theo-
rem 2.4, G is not solid. This is a contradiction. The proof of the Main Theorem is
complete. 2

Using the techniques developed in this paper, we have been able to derive an
alternative proof of the theorem due to Fischer and Little [9] which characterizes
near-bipartite non-Pfaffian matching covered graphs.
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(The Main Theorem) Every minimal non-Pfaffian brick must have a nontrivial
separating cut.

Corollary 4.4 {cor:main} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The only minimal non-Pfaffian solid matching covered graph is the brace K3,3.

Theorem 4.5 {thm:decorations} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A solid matching covered graph is Pfaffian if and only if it does not contain K3,3

and none of the three graphs shown in Figure 7 as a conformal minor.

Lemma 5.1 {lem:triple} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Let G be a minimal non-Pfaffian matching covered graph, e a removable edge of G.
Then, G has an orientation D and two perfect matchings, M1 and M2, such that
(i) D− e is a Pfaffian orientation of G− e, (ii) edge e lies in M1 ∩M2, and (iii) M1

and M2 have distinct signs in D.
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Theorem 5.2 {thm:extension} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Let G be a matching covered graph, R be a b-invariant class of G, and
−−−−→
G−R be any

Pfaffian orientation of G−R. Then G is Pfaffian if and only if there is an extension
−→
G of

−−−−→
G−R which is a Pfaffian orientation of G.

Corollary 5.3 {cor:invInM1cupM2} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Let G be an minimal non-Pfaffian matching covered graph, e a b-invariant edge
of G, and let D an orientation of G, M1 and M2 perfect matchings of G such that
(D,M1,M2) is an e-triple. Then, every b-invariant edge of G− e lies in M1 ∪M2.

Lemma 5.4 {lem:dblInM1cupM2} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Let G be a minimal non-Pfaffian brick, e a b-invariant edge of G, and let D an
orientation of G, M1 and M2 perfect matchings of G such that (D,M1,M2) is an
e-triple. Then, every removable doubleton of G− e is a subset of M1 ∪M2.

Lemma 6.1 {lem:peripheral} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Let G be a matching covered graph free of nontrivial tight cuts, let e be a b-invariant
edge of G, C := ∂(X) a nontrivial cut of G such that C − e is tight in G− e. Then,
C is peripheral and precisely one of (C − e)-contractions of G − e is bipartite. Let
J := (G− e)/X → x be bipartite. Then, either both ends of e lie in the inner part
of J or one end of e lies in the inner part of J , the other end lies in X. 2

Lemma 6.2 {lem:three-case, fig:three-case} . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

(The Three Case Lemma) Let G be a brick, e a b-invariant edge of G such
that G − e is not a brick. Let H be the brick of G − e, obtained by a tight cut
decomposition of G − e. Then, one of the following three alternatives holds (see
Figure 8):

(i) either G has a peripheral cut C1 := ∂(X1) such that J1 := (G − e)/X1 → x1
is bipartite, H = (G − e)/X1 → x1 and edge e has one end in the inner part
of J1, the other end in V (H)− x1,

(ii) or G has two peripheral cuts Ci := ∂(Xi), for i = 1, 2, such that X1 and X2 are
disjoint, Ji := (G−e)/Xi → xi is bipartite, H = ((G−e)/X1 → x1)/X2 → x2
and edge e has one end in the inner part of J1, the other end in the inner part
of J2,

(iii) or G has a peripheral cut C1 := ∂(X1) such that J1 := (G − e)/X1 → x1 is
bipartite, H = (G − e)/X1 → x1 and edge e has both ends in the inner part
of J1.

Theorem 6.3 {thm:thin-brick} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

(The thin edge theorem for bricks) Every brick distinct from K4, C6 and the
Petersen graph has a thin edge. 2
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Figure 8: The three cases of Lemma 6.2

Proposition 6.4 {prp:nonremovable-bip} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

(see [14]) Let G be a bipartite matching covered graph with bipartition (A,B),
and let e be an edge of G. Then, e is not removable in G if and only if there is a
partition (A′, A′′) of A and a partition (B′, B′′) of B with |A′| = |B′| such that e is
the only edge joining a vertex in A′ to a vertex in B′′.

Lemma 6.5 {lem:almost-all} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Let G be a matching covered graph free of nontrivial tight cuts, e a removable
edge of G, C := ∂(X) a peripheral cut of G such that the (C − e)-contraction
J := (G − e)/X → x is bipartite. The following properties hold: (i) every edge of
C − e is removable in J and (ii) for any inner vertex v of J having degree three or
more, at most one edge of J in ∂(v) is not removable.
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Corollary 6.6 {cor:almost-all} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Let G be a graph free of nontrivial tight cuts, e a removable edge of G, C := ∂(X)
a peripheral cut of G, let J := (G− e)/X → x be a bipartite (C − e)-contraction of
G− e. Then, every removable class of (G− e)/X → x is also removable in G− e. 2

Theorem 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

(Tutte’s Perfect Matching Theorem [20]) A graph G has a perfect matching
if and only if |O(G− S)| ≤ |S|, for each subset S of V (G).

Corollary 6.8 {cor:admissible} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Let G be a graph which has a perfect matching. Then the following properties hold:

(i) An edge e of G is admissible if, and only if, there is no barrier which contains
both ends of e.

(ii) For each maximal barrier B of G, all components of G−B are critical.

Theorem 6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

(Dulmage-Mendelson Decomposition Theorem [14]) Let G be a graph
with a perfect matching and bipartition (A,B). Then, there exists a partition
(A1, A2, . . . , Ar) of A and a partition (B1, B2, . . . , Br) of B, where r ≥ 1 and such
that for i = 1, . . . , r, (i) the subgraph Gi of G induced by Ai ∪ Bi has bipartition
(Ai, Bi) and is matching covered and (ii) every edge of G incident with some vertex
of Ai is also incident with some vertex of Bj , where j ≤ i.

Theorem 6.10 {thm:canonicalBarrier, item:Hmc, item:eInOdd,

item:separating} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Let G be a bicritical graph, and let e be a non-removable edge of G. Then, G − e
contains a barrier B that satisfies the following properties:

(i) Bipartite graph H(B) associated with barrier B is matching covered.

(ii) Edge e has its ends in distinct odd components of G− e−B.

(iii) For each odd component K of G−e−B, cut C(K) := ∂G(V (K)) is separating
in G.

Lemma 6.11 {lem:smallCap} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Let G be a brick, and let e1 and e2 be two adjacent non-removable edges of G.
Suppose that, for i = 1, 2, B′

i is a barrier of G− ei. Then |B′
1 ∩B′

2| ≤ 1.

Corollary 6.12 {cor:canonicalBarrier} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Let G be a solid brick, e a non-removable edge of G. Then, G− e contains a barrier
B such that every odd component of G− e−B is trivial and edge e has its ends in
distinct odd components of G − e − B. Moreover, the graph H(B) obtained from
G − e by removing the vertices in even components of G − e − B and the edges
having both ends in B is matching covered.
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Theorem 6.13 {thm:solid:technical, fig:B-I} . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Let G be a solid brick, v a vertex of G, n the number of neighbours of v, d the
degree of v. Enumerate the d edges of ∂(v) as ei := vvi, for i = 1, 2, . . . , d. Assume
that neither e1 nor e2 is removable in G. Then, n = 3 and, for i = 1, 2, there exists
an equipartition (Bi, Ii) of V (G) such that

(i) ei is the only edge of G that has both ends in Ii,

(ii) every edge that has both ends in Bi is incident with v3, and

(iii) the bipartite subgraph Hi of G, obtained by the removal of ei and each edge
having both ends in Bi, is matching covered.

Moreover, B1 = (I2 − v) ∪ {v3} and B2 = (I1 − v) ∪ {v3}. (See Figure 12 for an
illustration.)
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Figure 12: Graphs G, G− e1 and G− e2

Corollary 6.14 {cor:atMostTwo} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

If G is a solid brick with six vertices or more then for every vertex v of G at most
two edges incident with v are non-removable in G.

Corollary 6.15 {cor:atMostOne} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

If G is a solid brick of maximum degree three or four, then, for every vertex v of G
at most one edge incident with v does not lie in a removable class of G.

Lemma 7.1 {lem:monot:lambda} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

If G is a solid matching covered graph and e is a removable edge of G then G− e is
also solid.

Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Brick G is simple and has eight or more vertices. Moreover, it has a thin edge.

Lemma 7.3 {lem:Hsolid} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

For every removable edge e of G, the brick H of G− e is solid.

Lemma 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Brick G is cubic.
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Lemma 7.5 {lem:noTriangles} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Brick G is free of triangles and edge e has index two.

Lemma 7.6 {lem:only:e} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

M1 ∩M2 = {e}.

Lemma 7.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Set M1△M2 spans a Hamiltonian cycle Q of graph G− v′ − v′′.

Lemma 7.8 {lem:oddCycle} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

No chord of Q has one end in U , the other in W .

Lemma 7.9 {lem:monochrom} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Cycle Q does not have a chord having both ends in U and another chord having
both ends in W .


